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1 Introduction

With the development of internet, information propagates quickly along social network.

People can easily share information, such as ideas, pictures, articles or videos, to a lot of

friends through large social network platforms like Facebook, Twitter and QQ. Social net-

work data have become popular and various models have been proposed for social network

data, which include but are not limited to the stochastic block model (Wang and Wong

1987; Nowicki and Snijders 2001), exponential random graph model (Frank and Strauss

1986; Hunter et al. 2008) and latent space model (Hoff et al. 2002; Hoff 2003; Chang et al.

2018).

It has been widely studied that people are likely to be influenced by their friends on

social network. Studying social dependence is an important question in social network anal-

ysis (Manski 1993; Shalizi and Thomas 2011; Huang et al. 2016; Zhu et al. 2017). There

are mainly three types of social network dependence, namely contextual (exogenous), en-

dogenous (contagion) and correlated effects (external causation). Contextual effect means

friends have similar responses because they share similar characteristics. Endogenous effect

refers to the situation when one’s outcome depends on others’ outcome. Correlated effect

exists when an external effect results in the similarity between friends.

Various methods have been proposed for modeling social network dependence. One

popular approach is to introduce a network-based penalty on individual node effects, for

example, see Li et al. (2016). In their work, a cohesion penalty similar to the graph

Laplacian regularization is posited on individual node effects, which encourages similarity

between effects of linked nodes. Similar ideas have also been widely used for building

prediction models for studying gene-network data (e.g. Li and Li 2008, 2010; Sun et al.

2014). Another popular approach is to consider spatial autoregression models, with the

parameter of spatial autocorrelation that quantifies the interactive dependence between

connected nodes in a network (Chen et al. 2013). The maximum likelihood estimation for

various spatial autocorrelation models have been studied in the economics literature (e.g.

Ord 1975; Anselin 1980; Bramoullé et al. 2009; Lee et al. 2010). Recently, Zhou et al.

(2017) proposed several likelihood-based estimation methods for spatial autocorrelation in

2



a linear regression setting based on sampled network data.

In some applications, it is interesting to find whether interaction between friends can

affect the propagation of events. For example, when people start playing an online game

and send invitations to their friends to join in, it is likely to see that some of their friends

will follow and start playing the same game. Statistical analysis for online game data

has drawn great attention recently. Chen et al. (2017) proposed a hazards regression for

freemium products based on a competing risk approach.

In this work, we are interested in how friendship affects the propagation of an event

along network. Our study is motivated by data collected from players of a popular mobile

game from one of the largest online social network platforms. Due to the confidentiality,

the platform that provided us data has requested anonymity. The network we considered

is the users’ friendship. Since friends can collaborate to win more experience and tools,

the game sends invitations to players’ friends asking them to join the game. The times

when users joined the game are recorded. Here, the time-to-event of interest is defined

as the time from the starting point, when the game was launched, to the endpoint when

a user joined to play the game. If a person never started playing the game during the

study period, the event time of this person is considered to be censored. In addition, some

demographic information of users, such as age and gender, is available.

Our goals here are to detect whether certain type of social network dependence exists

with time-to-event data and to quantify this dependence if it exists. In our considered

mobile game data application, an important feature for studying social network dependence

is that not all users will be influenced by friends. For example, for some users, whether they

will start playing the mobile game will not depend on their friends’ characteristics. Because

there is a cost on information targeting, it is of great interest to identify the subgroup of

people that are more likely to be influenced by their friends on a social network.

Towards these goals, we propose a latent Cox model with contextual effect. Our model

differs from the existing models in two aspects. First, the existing models are mainly for

uncensored data and most of them are based on linear regression models for responses.

Here, we incorporate the network dependence term in the conditional hazard function of
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the event time to model the dependence between event times of connected users. Second, a

key difference is that most existing models (e.g. Zhu et al. 2017; Zhou et al. 2017) assume

the response of any user in the social network will be affected by his or her friends and the

magnitude of such dependence is common; while in our model, a latent binary indicator is

introduced, indicating whether a user is susceptible to the influence of his or her friends.

Here, introducing the susceptible indicator not only increases the flexibility for practical

applications but also provides a way to estimate the probability that a user might be

affected by his or her friends’ characteristics in the social network. Therefore, it can help

to identify a subgroup of users who are more likely to be influenced by their friends.

We first develop a score-type test for detecting the existence of the social network

dependence based on the proposed latent cox model with contextual effect. When the

social network dependence exists, we further develop an EM-type algorithm to estimate

the model parameters and derive the associated inference procedure. The remainder of this

paper is organized as follows. In Section 2, we introduce the proposed model. In Section 3,

we present the proposed test statistic and estimation method. The asymptotic properties

of the proposed test and estimators are also established here. In section 4, simulations are

conducted to evaluate the empirical performance of the proposed test and estimators. An

application of the proposed methods to the time-to-event data for playing a popular mobile

game is given in Section 5, followed by discussions given in Section 6. All the technical

derivations are provided in the Appendix.

2 Latent Cox Model with Contextual Effects

Let X = (x1, . . . ,xn)T ∈ Rn×p denote the covariate matrix which contains feature in-

formation of n individuals in the network, such as age and gender of each person in the

network. Let W = (Wij) ∈ {0, 1}n×n be the adjacency matrix of a network involving n

nodes, where Wij = 1 means node i and node j are connected and Wij = 0 otherwise. For

each node i, let Ti denote the time to an event of interest and Ci the associated censoring

time. Define T̃i = min(Ti, Ci) and δi = I(Ti ≤ Ci). Our goal is to test and estimate the

dependence of event times among friends in the social network. A salient feature of social
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network dependence is that not all the individuals are susceptible to their friends’ influence.

To characterize the heterogeneity in susceptibility of individuals, we propose the following

latent Cox model with contextual effects for the conditional hazard function for subject i:

λi(t|W ,X, ξi) = λ(t)eβ
′xi+ρξi

∑n
j 6=iWijβ

′xj , (1)

where λ(t) is an unspecified baseline hazard function, β is a p-dimensional vector of param-

eters and ξi = 0/1 denotes the susceptibility indicator of individual i. In particular, when

ξi = 0, the event time of individual i does not depend on his or her friends’ characteristics.

Moreover, we assume

P (ξi = 1|xi) =
eγ
′x∗i

1 + eγ
′x∗i
, (2)

where x∗i = (1,x′i)
′ and γ is a (p + 1)-dimensional vector of parameters. Note that ρ is

identifiable only when β does not equal to 0 and W is not a zero matrix. Throughout this

paper, we make these assumptions.

Note that in our model, the adjacency matrix W is not normalized by row. The

proposed method can be easily extended to incorporate the row-normalized matrix W ,

where the sum of each row of W is 1. However, the interpretation of the model would be

different. When W is row-normalized, the network effect from friends is assumed to be an

average, which does not depend on the number of friends of a node. On the other hand,

when W is not row-normalized, as what we consider here, the number of friends also plays

a role to the magnitude of network effect.

The parameter ρ describes the magnitude of the dependence of a susceptible node to its

connected nodes, which is similar to the spatial autocorrelation parameter studied in Zhou

et al. (2017). When ρ = 0, there is no social network dependence between event times of

connected nodes. Under such a situation, the parameter γ is not estimable. In the next

section, we will first propose a test for the null hypothesis: H0 : ρ = 0, and then develop an

EM-type algorithm for estimating the model parameters when ρ 6= 0. For convenience, it is

assumed that Ci is independent of Ti. For example, in the mobile game application, all the
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censoring times are equal to the total duration of the study. This assumption is satisfied.

However, this assumption can be relaxed as that Ci is independent of Ti given covariates

xi and those xj ’s with Wij = 1. Our proposed test and estimators are still valid.

3 Testing and Estimation Methods

3.1 Test for H0 : ρ = 0

We propose a score-type tests statistic. Firstly suppose that ξ ≡ (ξ1, . . . , ξn)′ is known.

With the same argument as in Cox (1975), the partial likelihood function of the proposed

model (1) is

L(η; ξ) =
n∏
i=1

[
eβ
′xi+ρξi

∑n
j 6=iWijβ

′xj∑n
l=1 e

β′xl+ρξl
∑n
j 6=lWljβ′xjI(T̃l ≥ T̃i)

]δi
, (3)

where η = (ρ,β′)′. Under H0, model (1) becomes the standard Cox proportional hazards

model. Let β̃ denote the maximum partial likelihood estimator under the null. Define

η̃ = (0, β̃′)′. Then, the score statistic is given by

S1(η̃; ξ) =
∂ log(L)

∂ρ

∣∣∣∣∣
η=η̃

=
n∑
i=1

δi

{
Ẑi −

∑n
l=1 e

β̃′xlI(T̃l ≥ t̃i)Ẑl∑n
l=1 e

β̃′xlI(T̃l ≥ t̃i)

}

=
n∑
i=1

∫ τ

0

{
Ẑi −

∑n
l=1 e

β̃′xlI(T̃l ≥ s)Ẑl∑n
l=1 e

β̃′xlI(T̃l ≥ s)

}
dM̂i(s), (4)

where τ is the total study duration, Ẑi = ξi
∑n

j 6=iWijβ̃
′xj and

M̂i(s) = Ni(s)−
∫ s

0

eβ̃
′xiI(T̃i ≥ u)dΛ̃(u),

with Ni(s) = δiI(T̃i ≤ s) and Λ̃(u) =
∫ u

0

∑n
i=1 dNi(t)∑n

j=1 I(T̃j≥t)e
β̃′xj

being the Breslow estimator of the

baseline cumulative hazard function under the null.

Since ξ is unknown in practice, we replace ξi with its expectation pi ≡ P (ξi = 1|xi)

given in (2). Specifically, define Ẑ∗i = pi
∑n

j 6=iWijβ̃
′xj. By replacing Ẑi with Ẑ∗i in equation
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(4), we obtain a new score-type statistic, denoted by S∗1(η̃;γ). Note that γ is not identi-

fiable under the null. Following the similar technique used in Fan et al. (2016) for testing

the existence of a subgroup with an enhanced treatment effect, we propose the following

supremum score test statistic:

Tn = sup
γ∈Γ

{S∗1(η̃;γ)}2∑n
i=1

{
ψ̂∗i (η̃, Λ̃;γ)

}2 .

Here, Γ is the domain of γ, which is usually Rp+1. In practice, the supreme is obtained by

a grid search over Γ. ψ̂∗i (η̃, Λ̃;γ) in the denominator is defined as

ψ̂∗i (η̃, Λ̃;γ) =

∫ τ

0

[
Ẑ∗i −

∑n
l=1 e

β̃′xlI(T̃l ≥ s)Ẑ∗l∑n
l=1 e

β̃′xlI(T̃l ≥ s)
−

I∗12,n(η̃)I−1
22,n(η̃)

{
xi −

∑n
l=1 e

β̃′xlI(T̃l ≥ s)xl∑n
l=1 e

β̃′xlI(T̃l ≥ s)

}]
dM̂i(s),

where I22,n(η̃) = −∂2 log(L)
∂ββ′

|η=η̃, I12,n(η̃) = −∂2 log(L)
∂ρ∂β′

|η=η̃, and I∗12,n(η̃) is obtained from

I12,n(η̃) by replacing ξi with pi.

In the Appendix, we show that under the null,

1√
n
S∗1(η̃;γ) =

1√
n

n∑
i=1

ψ∗i (η̃0, Λ̃0;γ) + op(1),

where η̃0 = (0, β̃′0)′ and ψ∗i (η̃0, Λ̃0;γ) can be obtained from ψ̂∗i (η̃, Λ̃;γ) by replacing β̃

with β̃0 and Λ̃ with Λ̃0. Here, β̃0 and Λ̃0 are the true values of β and Λ, respectively,

under the null. By applying the martingale central limit theorem, we have n−1/2S∗1(η̃;γ)

converges in distribution to a mean-zero normal variable under the null, with the asymptotic

variance being consistently estimated by n−1
∑n

i=1{ψ̂∗i (η̃, Λ̃;γ)}2. In particular, we need

the following conditions:

C1. The function Λ̃0(t) is strictly increasing and continuously differentiable, and Λ̃0(τ) <

∞. The true parameters β̃0 under the null lie in the interior of a compact set.
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C2. The covariates vector x is bounded in the sense that P (|x| < m) = 1 for some

constant m > 0. In addition, the vector x is linearly independent.

C3. The adjacency matrix W satisfies
∑

j 6=iWij ≤ K0 for all i, for some constant K0.

Conditions C1 - C3 ensure the boundedness of the asymptotic variance of n−1/2S∗1(η̃;γ). In

particular, Condition C3 assumes that the number of friends of each node is bounded, which

implies sparsity of the network connectivity. Such a condition can facilitate the derivation

of the large sample results. Under these conditions, we can establish the asymptotic null

distribution of the test statistic Tn in the following theorem.

Theorem 1. Tn converges in distribution to sup
γ∈Γ

G2(γ) under H0 as n→∞, where {G(γ) :

γ ∈ Γ} is a mean zero Gaussian process with the covariance function

Σ(γ1,γ2) = lim
n→∞

∑n
i=1 ψ

∗
i (η̃0, Λ̃0;γ1)ψ∗i (η̃0, Λ̃0;γ2)√∑n

i=1{ψ̂∗i (η̃, Λ̃;γ1)}2
∑n

i=1{ψ̂∗i (η̃, Λ̃;γ2)}2

,

for any γ1,γ2 ∈ Γ.

The proof of Theorem 1 is given in Appendix A. To obtain the critical value of the

asymptotic null distribution of Tn, we adopt a resampling method. Specifically, we consider

the perturbed test statistic

T ∗n = sup
γ∈Γ

{∑n
i=1 φiψ̂

∗
i (η̃, Λ̃;γ)

}2

∑n
i=1

{
ψ̂∗i (η̃, Λ̃;γ)

}2 ,

where φ1, . . . , φn are i.i.d. standard normal variables. It can be shown that Tn and T ∗n

have the same asymptotic null distribution. Therefore, we can generate a large number of

perturbed statistics and use the empirical upper α-quantile of the perturbed statistics to

estimate the critical value Cα for an α-level test. The null hypothesis is rejected if Tn > Cα.
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3.2 Parameter Estimation

Throughout this section, we assume ρ 6= 0. Under such an assumption, the parameters

in models (1) and (2) are identifiable. We develop an EM-type algorithm to estimate the

model parameters, denoted by Θ = (β′, ρ,γ ′)′ and Λ(t) =
∫ t

0
λ(u)du. Define Λi(t) =

eβ
′xi+ρξi

∑n
j 6=iWijβ

′xjΛ(t). The complete log likelihood function is

l(Θ,Λ) =
n∑
i=1

[
δi{log λ(T̃i) + β′xi + ρξi

n∑
j 6=i

Wijβ
′xj} − Λi(T̃i) + ξiγ

′x∗i − log(1 + eγ
′x∗i )

]
.

(5)

Let Θ̂(k) and Λ̂(k) denote the estimators of Θ and Λ at the kth iteration, respectively, and

Ω denote the observed data, {(T̃i, δi,xi) : i = 1, . . . , n} and W . At the (k+ 1)th iteration,

in the E-step, we calculate the conditional expectation of l(Θ,Λ) given observed data Ω

and current estimators Θ̂(k) and Λ̂(k) of the parameters. Specifically,

Q(Θ,Λ|Θ̂(k), Λ̂(k)) ≡ E{l(Θ,Λ)|Ω, Θ̂(k), Λ̂(k)}

=
n∑
i=1

[
δi{log λ(T̃i) + β′xi + ρA

(k)
i

n∑
j 6=i

Wijβ
′xj} −B(k)

i + A
(k)
i γ

′x∗i − log(1 + eγ
′x∗i )

]
, (6)

where

A
(k)
i = E(ξi|Ω, Θ̂(k), Λ̂(k))

=
eδiρ̂

(k)
∑n
j 6=iWij β̂

(k)′xje−e
β̂(k)′xi+ρ̂

(k) ∑n
j 6=i Wij β̂

(k)′xj Λ̂(k)(T̃i)p̂
(k)
i

eδiρ̂
(k)

∑n
j 6=iWij β̂(k)′xje−e

β̂(k)′xi+ρ̂(k) ∑n
j 6=i Wij β̂

(k)′xj Λ̂(k)(T̃i)p̂
(k)
i + e−e

β̂(k)′xi Λ̂(k)(T̃i)(1− p̂(k)
i )

,

B
(k)
i = E{Λi(T̃i)|Ω, Θ̂(k), Λ̂(k)} = (1− A(k)

i )eβ
′xiΛ(T̃i) + A

(k)
i eβ

′xi+ρ
∑n
j 6=iWijβ

′xjΛ(T̃i),

and p̂
(k)
i = exp(γ̂(k)′x∗i )/{1 + exp(γ̂(k)′x∗i )}.

The function Q(Θ,Λ|Θ̂(k), Λ̂(k)) can be written as the summation of l1(β, ρ,Λ) and
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l2(γ), where

l1(β, ρ,Λ) =
n∑
i=1

[
δi{log λ(T̃i) + β′xi + ρA

(k)
i

n∑
j 6=i

Wijβ
′xj}

−eβ′xiΛ(T̃i){(1− A(k)
i ) + A

(k)
i eρ

∑n
j 6=iWijβ

′xj}
]
,

l2(γ) =
n∑
i=1

{
A

(k)
i γ

′x∗i − log(1 + eγ
′x∗i )
}
.

In the M-step, we maximize the functions l1(β, ρ,Λ) and l2(γ) separately. Note that l2(γ)

has a form similar to the log likelihood function for a logistic regression. It can be maxi-

mized directly using many existing gradient-based methods. Let γ̂(k+1) denote the resulting

maximizer. The function l1(β, ρ,Λ) involves the nonparametric function Λ. To maximize

l1(β, ρ,Λ), a log profile likelihood is first constructed. Similar to the arguments in Jo-

hansen (1983) and Klein (1992), when β and ρ are fixed, the nonparametric estimator that

maximizes l1(β, ρ,Λ) is given by

Λ̂(k+1)(t;β, ρ) =
n∑
i=1

∫ t

0

dNi(s)∑n
j=1 I(T̃j ≥ s)eβ

′xj{(1− A(k)
j ) + A

(k)
j eρ

∑n
l 6=jWjlβ′xl}

. (7)

Plugging Λ̂(k+1)(t;β, ρ) into l1(β, ρ,Λ), the log profile likelihood function for β and ρ, up

to some constant, is

pl1(β, ρ) =
n∑
i=1

δi

(
β′xi + ρA

(k)
i

n∑
j 6=i

Wijβ
′xj

− log

[
n∑
j=1

I(T̃j ≥ T̃i)e
β′xj

{
(1− A(k)

j ) + A
(k)
j eρ

∑n
l6=jWjlβ

′xl
}])

.

The log profile likelihood function pl1(β, ρ) is not concave in β and ρ. To maximize it,

we propose an iterative optimization method. Specifically, given β, pl1(β, ρ) is a uni-

variate concave function of ρ, so it can be easily maximized with respect to ρ. Let

ρ̂(k+1) = arg max
ρ

pl1(β̂(k), ρ). Updating β given ρ is not straightforward. To facilitate

the optimization with the computational stability, we fix ρ = ρ̂(k+1) and β = β̂(k) in the
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terms ρA
(k)
i

∑n
j 6=iWijβ

′xj and A
(k)
j eρ

∑n
l 6=jWjlβ

′xl of pl1(β, ρ). Then, the log profile likelihood

function pl1(β, ρ) can be written as, up to some constant,

n∑
i=1

δi

(
β′xi − log

[
n∑
j=1

I(T̃j ≥ T̃i)e
β′xj

{
(1− A(k)

j ) + A
(k)
j eρ̂

(k+1)
∑n
l 6=jWjlβ̂

(k)′xl
}])

,

which is equivalent to fit a Cox model with regression parameters β and an offset log{(1−

A
(k)
j ) + A

(k)
j eρ̂

(k+1)
∑n
l6=jWjlβ̂

(k)′xl} for the jth subject, j = 1, . . . , n. Let β̂(k+1) denote the

maximizer of the above function. Define Λ̂(k+1)(t) = Λ̂(k+1)(t; β̂(k+1), ρ̂(k+1)). We iterate the

E-step and M-step until convergence. Let Θ̂ and Λ̂ denote the resulting estimators of Θ

and Λ, respectively, at convergence. Ideally, at each iteration of the EM algorithm, ρ and β

should be updated iteratively till convergence. However, to make the algorithm faster and

stable, we just update ρ and β once in each EM iteration. When the algorithm converges,

the final estimators approximately maximize the observed likelihood function. In our EM

algorithm, we chose the initial estimators of the parameters as follows: ρ̂(0) = 0, γ̂(0) = 0,

β̂(0) is the maximum partial likelihood estimator and Λ̂(0) is the Breslow’s estimator under

the standard Cox model when ρ = 0. In addition, the convergence criteria was set as

||Θ̂(k+1)− Θ̂(k)||∞ < 10−6. Based on our numerical experience, the proposed EM algorithm

usually converges within 50 iterations. It is worth noting that the term A
(k)
i at convergence

denotes the posterior probability that the ith user might be affected by his or her friends’

behavior. We name it the posterior “susceptible” probability.

Let Θ0 and Λ0 denote the true values of Θ and Λ, respectively. To establish the

asymptotic properties of the proposed estimators, we need Conditions C2 and C3, and the

following conditions:

C4. The function Λ0(t) is strictly increasing and continuously differentiable, and Λ0(τ) <

∞. The true parameters Θ0 lie in the interior of a compact set.

C5. The information matrix I(Θ0) defined in Appendix B is finite and positive definite.

Conditions C2 - C5 are commonly assumed for establishing the asymptotic properties

of the nonparametric maximum likelihood estimators for semiparametric survival models

(e.g. Zeng and Lin (2006), Lu (2008)).
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Theorem 2. As n→∞,

sup
t∈[0,τ ]

|Λ̂(t)− Λ0(t)| → 0 and ||Θ̂−Θ0|| → 0 a.s.

In addition,
√
n{Θ̂ − Θ0} converges in distribution to a mean-zero multivariate normal

variable with variance {I(Θ0)}−1.

The proof of Theorem 2 and the definition of I(Θ0) are given in Appendix B. Next,

we derive a method for estimating the asymptotic variance of Θ̂. We adopt the techniques

developed in Lange (1999) and Hunter and Lange (2004) for estimating the variance of

MM estimators. Specifically, define g(Θ|Θ̂(k)) = pl1(β, ρ)+ l2(γ). Let ∇2g(Θ|Θ̂(k)) denote

the second derivative of g(Θ|Θ̂(k)) with respect to Θ. Note that ∇2g(Θ|Θ̂(k)) has explicit

expressions, which are provided in Appendix C. Then, the observed information matrix

can be approximated by

I(Θ̂) = −∇2g(Θ̂|Θ̂)
{
I −∇M(Θ̂)

}
, (8)

where M(ν) = arg maxΘ g(Θ|ν) and ∇M(ν) = ∂M(ν)/∂ν ′. The inverse of I(Θ̂) is

an estimator of the asymptotic covariance matrix of Θ̂. Here, ∇M(ν) does not have

an explicit expression and we compute it by numerical differentiation. Specifically, write

M(Θ̂) = {M1(Θ̂), . . . ,Mq(Θ̂)}′, where q = 2(p + 1). The (i, j)th element of ∇M(Θ̂) is

computed by {Mi(Θ̂ + dej) −Mi(Θ̂)}/d, where d is a small positive value and ej is the

basis vector with the jth element as 1 and others as 0. Note that when the EM algorithm

converges, M(Θ̂) = Θ̂. To compute M(Θ̂ + dej), we fix ν = Θ̂ + dej and compute the

maximizer of g(Θ|ν) using the proposed EM algorithm. In our implementation, we chose

d = d0/n, where d0 is a small positive constant. We have tried a few values of d0, ranging

from 1 to 10, and found that d0 = 5 gives reasonable variance estimates for all cases.
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4 Simulation Studies

In this section, we conduct simulations to evaluate the empirical performance of the pro-

posed test and estimators. The underlying network is generated from the stochastic block

model (Holland et al. 1983). Let K be the number of communities in the network. The

stochastic block model is defined by

P (Wij = 1) = 1− P (Wij = 0) = PCiCj , (9)

where P is a K ×K symmetric matrix whose (Ci, Cj)th element PCiCj records the prob-

ability that communities Ci and Cj are connected. The total number of nodes n is set

to be 2000 and K is set to be 5 or 10. For K = 5, the numbers of nodes contained in

each community are (500, 500, 400, 400, 200) and the corresponding P matrix has elements

P11 = P33 = 0.05, P22 = P55 = 0.1, P44 = 0.2 and PCiCj = 10−4 for Ci 6= Cj. Sim-

ilarly, when K = 10, community sizes are (100, 100, 100, 100, 200, 200, 200, 200, 400, 400)

and P11 = P55 = 0.05, P22 = P66 = P99 = P10,10 = 0.1, P33 = P77 = 0.2, P44 = P88 = 0.3

and PCiCj = 10−4 if Ci 6= Cj. For K = 1, we generate the network from a pseudo

5-community stochastic block model with community numbers same as in K = 5, and

P11 = P22 = P33 = P44 = 0.01, P55 = 0.3, PCiCj = 0.015 for Ci 6= Cj. All communities

are quite connected without clear separation, while a subset of nodes are connected more

closely. Such network structure is similar to the observation in the real data example.

The baseline hazard function is chosen as λ0(t) = 0.5. Two covariates are included,

where the first covariate is generated from a Bernoulli distribution with the success prob-

ability 0.5 and the second is generate from a uniform distribution on (-1, 1). We set

β = (1,−1)′ and γ = (0, 1,−1)′. The censoring time is generated from a uniform distri-

bution on (0, c), where the constant c is chosen to yield the approximately 15% or 30%

censoring rate. We conduct 1000 replicates for each simulation setting.
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4.1 Simulation Results for Testing

We consider the following values of ρ: 0, 0.01, 0.015, 0.02 and 0.05, and conduct the

proposed test with the alpha-level as 0.05. When computing the p-value of the test statistic,

we generate 1000 perturbed test statistics as described in Section 3.1. The empirical type

I error and power of the proposed test are reported in Table 1. It can be seen that the

proposed test gives proper type I error rates under the null when ρ = 0. In addition, the

power of the test increases as ρ increases and the censoring rate decreases as expected.

Table 1: Type I error and power of the proposed test for simulated network.

K ρ CR RR K ρ CR RR K ρ CR RR

10

0.000 0.15 0.050

5

0.000 0.15 0.063

1

0.000 0.15 0.050
0.010 0.15 0.855 0.010 0.15 0.818 0.010 0.15 0.655
0.015 0.15 0.994 0.015 0.15 0.986 0.015 0.15 0.888
0.020 0.15 1.000 0.020 0.15 0.999 0.020 0.15 0.973
0.050 0.15 1.000 0.050 0.15 1.000 0.050 0.15 1.000

10

0.000 0.30 0.051

5

0.000 0.30 0.055

1

0.000 0.30 0.060
0.010 0.30 0.814 0.010 0.30 0.775 0.010 0.30 0.593
0.015 0.30 0.982 0.015 0.30 0.976 0.015 0.30 0.881
0.020 0.30 0.999 0.020 0.30 0.997 0.020 0.30 0.969
0.050 0.30 1.000 0.050 0.30 1.000 0.050 0.30 1.000

CR, censoring rate; RR, rejection rate over 1000 replicates.

In the above simulations, the values of ρ were chosen to be small because W is not

row-normalized in our model. Next, we examine the performance of the proposed test

when W is or is not row-normalized in our model. In particular, we will illustrate how the

power depends on the magnitude of ρ under these two choices of W . In this simulation, we

use the network from the considered mobile game data to demonstrate the performance of

our proposed test on a real-world network without any known structure. Details about this

data will be discussed in Section 5. Covariates and responses are generated in the same

way as previous, and regression parameters are set the same as before. For unnormalized

W , the values of ρ are chosen the same as in Table 1, from where we know the power is

already close to 1 when ρ approaches 0.02. For normalized W , the corresponding ρ value

needs to be much larger to yield reasonable power. Here, we increase the values of ρ tenfold

for unnormalized W . The type I error and power results are reported in Table 2. Based on

the results, it can be seen that our test gives proper type I error for both normalized and
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unnormalized W . Moreover, when W is normalized, the proposed test has a reasonable

power (≥ 80%) only when ρ increases to 0.5. This is not a surprise since with normalized

W , ρ measures the dependence on the average network effects of connected nodes.

Table 2: Type I error and power based on the considered mobile game network data.

CR
W Unnormalized W Normalized
ρ RR ρ RR

0.15

0.000 0.046 0.000 0.054
0.010 0.351 0.100 0.103
0.015 0.567 0.150 0.161
0.020 0.764 0.200 0.244
0.050 0.994 0.500 0.834

0.30

0.000 0.058 0.000 0.057
0.010 0.290 0.100 0.088
0.015 0.507 0.150 0.146
0.020 0.713 0.200 0.214
0.050 0.993 0.500 0.807

CR, censoring rate; RR, rejection rate over 1000 replicates.

4.2 Simulation Results for Estimation

Here, we set ρ = 0.05 or 0.1, and use the simulated network with K = 1, 5, or 10. Other

settings are the same as in the previous section. We report the mean and standard de-

viation of the proposed estimators, mean of the estimated standard errors and empirical

coverage probability of Wald-type 95% confidence intervals. Simulation results based on

1000 replicates are given in Table 3. Based on the results, we can see that all the estimators

are nearly unbiased, the means of estimated standard errors are close to the standard devi-

ations of the estimators, and the empirical coverage probabilities are close to the nominal

level for most parameters except that those for ρ are slightly larger than 95%. For compar-

isons, we also fit the classical Cox model without including the network information. The

corresponding results are reported in Table 4. Since the network dependence parameter

ρ is chosen to be small in our simulations, the estimates of the regression parameters ob-

tained under the classical Cox model are close to those obtained under the proposed Cox

model with network structure. However, the estimators from the classical Cox model are

apparently more biased for most scenarios, especially when ρ is 0.1.
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Table 3: Simulation results of parameter estimation for the proposed model.

K ρ CR ρ̂ β̂1 β̂2 γ̂0 γ̂1 γ̂2

10

0.05 0.15 Est. 0.051 1.000 -1.001 -0.017 1.029 -1.022
SD 0.006 0.090 0.076 0.273 0.367 0.316
SE 0.007 0.085 0.074 0.256 0.340 0.304
CP 0.979 0.923 0.937 0.935 0.921 0.943

0.10 0.15 Est. 0.100 1.003 -1.003 -0.001 1.005 -0.997
SD 0.007 0.069 0.068 0.128 0.180 0.169
SE 0.009 0.070 0.063 0.127 0.178 0.159
CP 0.980 0.953 0.934 0.947 0.949 0.938

0.05 0.30 Est. 0.050 1.003 -1.000 -0.006 1.020 -1.024
SD 0.006 0.098 0.084 0.294 0.393 0.339
SE 0.007 0.095 0.082 0.280 0.365 0.326
CP 0.983 0.936 0.954 0.948 0.925 0.952

0.10 0.30 Est. 0.100 1.004 -1.004 -0.001 1.006 -0.996
SD 0.008 0.077 0.073 0.132 0.186 0.172
SE 0.010 0.077 0.069 0.132 0.184 0.165
CP 0.979 0.943 0.945 0.948 0.946 0.945

5

0.05 0.15 Est. 0.051 1.001 -0.998 -0.003 1.027 -1.036
SD 0.006 0.091 0.078 0.285 0.381 0.331
SE 0.007 0.088 0.077 0.271 0.360 0.321
CP 0.974 0.944 0.950 0.942 0.943 0.948

0.10 0.15 Est. 0.101 0.998 -1.000 -0.005 1.018 -1.011
SD 0.008 0.076 0.067 0.133 0.184 0.170
SE 0.009 0.072 0.066 0.133 0.185 0.166
CP 0.978 0.932 0.939 0.949 0.946 0.946

0.05 0.30 Est. 0.051 1.003 -1.000 0.003 1.023 -1.032
SD 0.006 0.099 0.087 0.303 0.403 0.353
SE 0.007 0.097 0.085 0.293 0.384 0.341
CP 0.980 0.943 0.937 0.946 0.947 0.947

0.10 0.30 Est. 0.101 0.999 -0.999 -0.004 1.016 -1.014
SD 0.009 0.083 0.075 0.140 0.194 0.179
SE 0.010 0.079 0.072 0.139 0.193 0.173
CP 0.977 0.928 0.931 0.950 0.955 0.937

1

0.05 0.15 Est. 0.051 0.999 -0.998 -0.025 1.056 -1.059
SD 0.007 0.097 0.091 0.377 0.510 0.475
SE 0.007 0.094 0.083 0.367 0.493 0.439
CP 0.973 0.944 0.928 0.952 0.947 0.945

0.10 0.15 Est. 0.101 1.000 -0.999 -0.013 1.016 -1.013
SD 0.009 0.088 0.079 0.182 0.242 0.221
SE 0.010 0.083 0.076 0.183 0.245 0.219
CP 0.971 0.929 0.950 0.958 0.953 0.942

0.05 0.30 Est. 0.050 1.006 -1.002 0.007 1.024 -1.041
SD 0.007 0.104 0.094 0.405 0.528 0.486
SE 0.008 0.101 0.090 0.388 0.517 0.461
CP 0.970 0.926 0.937 0.946 0.945 0.948

0.10 0.30 Est. 0.101 1.001 -0.998 -0.010 1.014 -1.017
SD 0.010 0.098 0.088 0.196 0.257 0.240
SE 0.011 0.090 0.082 0.195 0.259 0.231
CP 0.967 0.924 0.927 0.954 0.952 0.938

CR, censoring rate; Est., mean of estimators; SD, standard deviation of estimators; SE, mean of
estimated standard errors; CP, empirical coverage probability of 95 % confidence intervals.

16



Table 4: Simulation results of parameter estimation for the classical Cox model.

K ρ CR β1 β2

10

0.05 0.15 Est. 0.995 -0.991
SD 0.052 0.048

0.10 0.15 Est. 0.902 -0.897
SD 0.051 0.047

0.05 0.30 Est. 1.001 -0.997
SD 0.057 0.052

0.10 0.30 Est. 0.899 -0.892
SD 0.056 0.051

5

0.05 0.15 Est. 1.009 -1.005
SD 0.052 0.048

0.10 0.15 Est. 0.924 -0.920
SD 0.051 0.047

0.05 0.30 Est. 1.016 -1.012
SD 0.057 0.052

0.10 0.30 Est. 0.925 -0.919
SD 0.056 0.052

1

0.05 0.15 Est. 1.040 -1.037
SD 0.053 0.048

0.10 0.15 Est. 0.981 -0.977
SD 0.054 0.048

0.05 0.30 Est. 1.048 -1.044
SD 0.058 0.052

0.10 0.30 Est. 0.992 -0.987
SD 0.059 0.052

CR, censoring rate; Est., mean of estimators; SD, standard deviation of estimators.

For each simulated data set, we can calculate the estimated posterior “susceptible”

probability for each subject as described in Section 3.2. Figure 1 shows the true ξi’s (left

panel) and the estimated posterior “susceptible” probability (right panel), P̂ (ξi = 1|Ω) for

one randomly selected simulated data set with K = 5, ρ = 0.1 and censoring rate 30%. The

root mean squared difference between them is 0.35. The values are represented by color

intensity varying from white (corresponds to 0) to red (corresponds to 1). The similarity of

these two plots demonstrates the ability of the estimated posterior “susceptible” probability

for predicting which users are more likely to be influenced by his or her friends’ behavior.

5 Application to a Mobile Game Data

This popular mobile game was officially launched in 2013, supported on either Android or

IOS with free download. It is a role-playing game, where users can choose from multiple
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different characters with various skills. The game can be played either solo or in a team in

order to complete a task. Users can log in using their account, which is one of the largest

online social network platforms. The friends of users on the network will become their

friends in the game, and they can compete or collaborate in the game. Users can also share

their scores or experience to all their friends. Due to the confidentiality, the platform that

provided us data has requested anonymity.

In this data, n = 961 users are included. We have the friendship structure of these

users, which can be transformed to the adjacency matrix W . The friend network is plotted

in Figure 3, where nodes refer to users and edges denote the friendship between two users.

Note that the friendship has to be mutual, so the network is undirected andW is symmetric.

The numbers of friends of users vary from 0 to 154 with median 6. In addition, the data

records the time when the user started to play the mobile game since it was launched, which

is the event time of our interest. The survival curve for the Kaplan-Meier estimator of the

event times is showed in Figure 2. It can be seen that the estimated survival curve has a

quick descent in the first 10 days, then a gradual decent from 10 to 40 days, and finally a

steep decent beyond 40 days. Besides the event times, three covariates: age, gender and

activity level (denoted by a-level), are included in our analysis. Here, the activity level

measures how long and how often the user has been using the platform. Higher activity

level indicates that the user is more active on the platform.

We first apply the proposed score test in Section 3.1. The value of the test statistic

is 5.59 and the associated p-value is 0.028. At level 0.05, we reject the null hypothesis

and claim that there is social network dependence among users’ event times. Next, we

estimate the model parameters using the proposed EM algorithm. Results are reported in

Table 5. The estimated value of the exogenous effect parameter ρ is 0.056 with the Wald

test p-value 0.02, indicating a significant positive social network dependence among those

susceptible users. This agrees with the score test result. Note that the Wald test requires

the full model defined by (1) and (2) being correctly specified, while the score test is more

robust since it only requires the standard Cox model being correctly specified under the

null. In terms of the other covariates, age and gender are not significant but activity level
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has a very significant effect on the event time. This implies that an individual’s activity

level will have an effect on his or her event time, and if this individual is susceptible, his

or her friends’ activity level will also have an effect on this individual’s event time. To

further investigate this finding, we divide users into two groups by the median of activity

level and plot the Kaplan-Meier curve for each group as well in Figure 2. We can observe

that the group with smaller activity levels has larger survival probabilities than the group

with larger activity levels. This implies that users with larger activity levels tend to play

the game earlier than those with smaller activity levels and thus may have more impact on

their friends, which agrees with our intuition.

In addition, we calculate the estimated posterior “susceptible” probability for each user

and plot these values using different colors in Figure 3, similar to Figure 1 in simulations.

The nodes with color closer to red indicate users that are more likely to be influenced

by friends. The histogram of the estimated posterior is presented in Figure 4. The right

skewness of the “susceptible” probability shows that the probability that people are affected

by friends is low for most individuals, but can be high for a group of people. Specifically,

the mean of the estimated posterior probability is 0.254 while the median is 0.081.

Table 5: Analysis results based on the proposed model for the mobile game data.

ρ̂ β̂age β̂gender β̂a-level
Estimate 0.056 0.056 0.051 0.140

SE 0.024 0.040 0.035 0.038
p-value 0.020 0.162 0.145 0.000

SE, estimated standard error.

Next, we investigate the necessity of introducing the latent susceptible indicators ξi’s

in the proposed model, where we assume there are two types of people, one can be affected

by friends with a common coefficient ρ, while the other cannot. If we ignore these two

subgroups, and assume that the dependence for the whole population is ρ, then the model

is simplified to

λi(t|W ,X) =λ(t)eβ
′xi+ρ

∑n
j 6=iWijβ

′xj . (10)
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A score test statistic for ρ can be derived as T =
{S0

1(η̃)}2∑n
i=1{ψ̂0

i (η̃,Λ̃)}2 , where S0
1(η̃) and ψ̂0

i (η̃, Λ̃)

are in the same format as S∗1(η̃;γ) and ψ̂∗i (η̃, Λ̃;γ) in Section 3.1 by replacing all ξi or

pi by 1. It is straightforward to show that T follows a chi-square distribution with the

degree freedom of 1. For the mobile game data, the test statistic value is 3.48, and the

p-value is 0.062. Therefore, the network dependence ρ is not significant under model (10)

at level 0.05. Such result indicates that it is hard to detect the existence of social network

dependence without considering the two subgroups. Moreover, we estimate the parameters

based on model (10) and the results are given in Table 6. The parameter estimation is

obtained by maximizing the partial likelihood through coordinate descent, i.e., optimize ρ

and β alternatively till convergence. The standard errors are estimated by inverting the

information matrix. The Wald test for ρ is not significance with the p-value of 0.226 based

on (10). This also agrees with the score test result.

To check the goodness-of-fit of different models, we further calculate the AIC values as

the summation of the negative log observed likelihood function and the number of param-

eters multiplying by 2 based on the fits for both the proposed model (1) and the simplified

model (10). The AIC values are 13168.8 and 13191.0 respectively. Therefore, model (1)

fits the data better than model (10). All above analyses support the need of including in-

dividual latent susceptible indicators for studying the social network dependence with the

considered data application. To complete the discussion, we also fit a classical Cox model

ignoring the network structure for the mobile game data. The parameter estimates for age,

gender and a-level are -0.019, 0.041, 0.154 with standard errors 0.040, 0.033, 0.036, and

the AIC value of the fitted Cox model is 13193.9. The larger AIC value here indicates that

the proposed model fits the data better than the classical Cox model ignoring the network

structure.

Table 6: Analysis results of simplified model (10) for the mobile game data.

ρ̂ β̂age β̂gender β̂a-level
Estimate 0.011 -0.042 0.035 0.138

SE 0.009 0.042 0.032 0.036
p-value 0.226 0.319 0.283 0.000

SE, estimated standard error.
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6 Discussion

In this paper, we developed a latent Cox model with contextual effect for studying social

network dependence with time to event data. An important feature of the proposed model

is to allow that only a subset of users are susceptible to the influence of their friends. Both

testing and estimation methods for the proposed model are investigated. In addition, our

estimation method naturally provides an estimate of the individual posterior “susceptible”

probability, which measures how likely a user might be influenced by his or her friends.

In the proposed model, it is assumed that there is a mixture of susceptible and non-

susceptible users, defined by a latent binary variable. For those susceptible users, the social

network dependence is characterized by the same parameter ρ. However, we may consider

a more general case to have an individual parameter ρi for each person, instead of ρξi,

and assume ρi follows some distribution, for example, a Beta distribution with the mean

and variance depending on covariates. In addition, we can include a subject-specific offset

in the proposed model to explain the further dependence among event times of connected

nodes and add a cohesion penalty on offsets as in Li et al. (2016).

For the considered mobile game data application, we have type I censoring. In our

work, we consider a general framework to incorporate random censoring. On the other

hand, a Tobit model (Tobin 1958) with the considered network structure can be developed

for handling type I censoring. However, to incorporate the latent susceptible indicator,

the derivation of associated testing and estimation procedures is not a straightforward

extension of the proposed methods, and requires further investigation. In addition, in

the mobile game data application, it is possible to have the event of “never start playing

the game”, which corresponds to a cured subject in survival analysis (Lu and Ying 2004;

Lu 2008). In the literature, a mixture cure-rate model can be fitted for survival data

with a cure fraction. However, it usually requires a sufficiently long follow-up. For the

considered mobile game data application, the study duration is very limited, which may

make it difficult to fit a mixture cure-rate model due to the non-identifiability in finite

samples. Alternatively, a competing risks approach can be considered as studied in Chen

et al. (2017). In such a competing risks approach, the event of “never start playing the
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game” can be naturally incorporated. However, it needs further investigation under our

considered latent Cox model with contextual effects.

Finally, in many network data applications, the scale of data can be incredibly large.

Our current method is developed for network-based event-time data with a moderate size.

For handling data of a large scale, some computational techniques need to be developed.

For example, parallel computing can be used when calculating the likelihood function and

the test statistics under different γ values. In addition, more efficient algorithms can be

used to handle the large matrix algebra in the proposed EM estimation method. This is

an interesting topic that warrants a future research.
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A Proof of Theorem 1

Recall that β̃ is the standard maximum partial likelihood under the null. Its asymptotic

representation is well known. By Taylor expansion and some empirical process approxima-

tion techniques, we have

1√
n
S∗1(η̃;γ) =

1√
n
S∗1(η̃0;γ)− I∗12,n(η̃0)I−1

22,n(η̃0)
1√
n
S2(η̃0;γ) + op(1),
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where S2(η̃0;γ) = ∂ log(L)/∂β|η=η̃0 . Therefore,

1√
n
S∗1(η̃;γ) =

1√
n

n∑
i=1

∫ τ

0

[
Z∗i −

∑n
l=1 e

β̃′0xlI(T̃l ≥ s)Z∗l∑n
l=1 e

β̃′0xlI(T̃l ≥ s)
−

I∗12,n(η̃0)I−1
22,n(η̃0)

{
xi −

∑n
l=1 e

β̃′0xlI(T̃l ≥ s)xl∑n
l=1 e

β̃′0xlI(T̃l ≥ s)

}]
dMi(s) + op(1)

=
1√
n

n∑
i=1

ψ∗i (η̃0, Λ̃0;γ) + op(1),

where Z∗i = pi
∑n

j 6=iWijβ̃
′
0xj and Mi(t) = Ni(t) −

∫ t
0
I(T̃i ≥ s)eβ̃

′
0xidΛ̃0(s) is a mean-zero

martingale process under the null.

Under Conditions C1-C3, it can be shown that σ2(γ) ≡ limn→ n
−1
∑n

i=1{ψ∗i (η̃0, Λ̃0;γ)}2

is finite and can be consistently estimated by n−1
∑n

i=1{ψ̂∗i (η̃, Λ̃;γ)}2. Therefore, for fixed

γ, by the martingale central limit theorem, we have n−1/2S∗1(η̃;γ) converges in distribution

to a mean-zero normal random variable with variance σ2(γ) under the null. In addition,

write n−1/2ψ∗i (η̃0, Λ̃0;γ) =
∫ τ

0
Hn,i(s;γ)dMi(s). We have

n∑
i=1

∫ τ

0

H2
n,i(s;γ)I{|Hn,i(s;γ)| ≥ ε}I(T̃i ≥ s)eβ̃

′
0xidΛ̃0(s)→ 0

for any ε > 0 and fixed γ. By the martingale central limit theorem of Fleming and

Harrington (1991), we have n−1/2S∗1(η̃;γ) converges weakly to a Gaussian process with

mean 0 and covariance matrix limn→∞ n
−1
∑n

i=1 ψ
∗
i (η̃0, Λ̃0;γ1)ψ∗i (η̃0, Λ̃0;γ2) for any γ1,γ2 ∈

Γ. The results in Theorem 1 then follows.
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B Proof of Theorem 2

First, we prove the consistency of the proposed estimators. Define Hi(β) =
∑

j 6=iWijβ
′xj.

The observed likelihood function is given by

L(Λ,Θ) =
n∏
i=1

[
{λ(T̃i)e

β′xi+ρHi(β)}δie−Λ(T̃i)e
β′xi+ρHi(β)

pi + {λ(T̃i)e
β′xi}δie−Λ(T̃i)e

β′xi (1− pi)
]

=
n∏
i=1

{
piλ(T̃i)e

β′xi+ρHi(β)e−Λ(T̃i)e
β′xi+ρHi(β)

+ (1− pi)λ(T̃i)e
β′xie−Λ(T̃i)e

β′xi
}δi
×{

pie
−Λ(T̃i)e

β′xi+ρHi(β)

+ (1− pi)e−Λ(T̃i)e
β′xi
}1−δi

.

Let ln(Λ,Θ) = n−1 log{L(Λ,Θ)}. Then

ln(Λ,Θ) =
1

n

n∑
i=1

[
δi log

{
λ(T̃i)gi(Λ,Θ)eβ

′xi
}

+ logS(T̃i,Λ,Θ)
]
,

where

S(T̃i,Λ,Θ) =pie
−Λ(T̃i)e

β′xi+ρHi(β)

+ (1− pi)e−Λ(T̃i)e
β′xi ,

gi(Λ,Θ) =
pie
−Λ(T̃i)e

β′xi+ρHi(β)
eρHi(β) + (1− pi)e−Λ(T̃i)e

β′xi

pie−Λ(T̃i)eβ
′xi+ρHi(β)

+ (1− pi)e−Λ(T̃i)eβ
′xi

.

Write Θ̂ = Θ̂n and Λ̂ = Λ̂n, to show their dependence on n. It can be shown that

supn Λ̂n(τ) < ∞ based on Condition C3.2. By Helly’s theorem (Ash 1972), there exists a

convergent subsequence of (Λ̂n, Θ̂n), say (Λ̂nk , Θ̂nk) → (Λ∗,Θ∗) a.s. for some Θ∗ and an

increasing function Λ∗. Define

Λ0
n(t) =

n∑
i=1

∫ t

0

dNi(s)∑n
j=1 I(T̃j ≥ s)eβ

′
0xj{(1− Aj) + Ajeρ0Hj(β0)}

,

where Aj = E(ξj|Ω,Θ0,Λ0). It is easy to show that Λ0
n(t)→ Λ0(t) uniformly on [0, τ ]. In

addition, we have

0 ≤ lnk(Λ̂nk , Θ̂nk)− lnk(Λ0
nk
,Θ0).
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The right-hand side of the above equation can be shown to converge to

E

(∫ τ

0

[
log

{
g(Λ∗,Θ∗)eβ

∗′x

g(Λ0,Θ0)eβ
′
0x
γ(t)

}
−
{
g(Λ∗,Θ∗)eβ

∗′x

g(Λ0,Θ0)eβ
′
0x
γ(t)− 1

}]
Y (t)g(Λ0,Θ0)eβ

′
0xdΛ0(t)

)
,

(11)

where Y (t) = I(T̃ ≥ t) and

γ(t) =
E
[
Y (t)eβ

′
0x{(1− A) + Aeρ0H(β0)}

]
E [Y (t)eβ∗′x{(1− A∗) + A∗eρ∗H(β∗)}]

.

Here A∗ = E(ξ|Ω,Θ∗,Λ∗). Equation (11) is the negative Kullback-Leibler information,

which is less or equal to 0. As a result, the Kullback-Leibler information must equal to

zero, that is,∫ τ

0

log{λ∗(t)eβ∗′xg(Λ∗,Θ∗)}dN(t)−
∫ τ

0

Y (t)eβ
∗′xg(Λ∗,Θ∗)dΛ∗(t)

=

∫ τ

0

log{λ0(t)eβ
′
0xg(Λ0,Θ0)}dN(t)−

∫ τ

0

Y (t)eβ
′
0xg(Λ0,Θ0)dΛ0(t). (12)

Equation (12) holds for (i) Y (τ) = 1, N(τ) = 0, and (ii) Y (t) = 1, N(t−) = 0 and N(t) = 1

for ∀t ∈ (0, τ ]. Taking the difference of these two cases, we have

λ∗(t)eβ
∗′xg(Λ∗,Θ∗) = λ0(t)eβ

′
0xg(Λ0,Θ0), ∀t ∈ (0, τ ].

By integrating both sides from 0 to t, this implies that log{S(t,Λ0,Θ0)} = log{S(t,Λ∗,Θ∗)}

for all t ∈ (0, τ ]. Thus, we have

(p− p∗)
{
e−Λ0(T̃ )eβ

′
0x+ρ0H(β0)

− e−Λ0(T̃ )eβ
′
0x
}

− p∗
{
e−Λ∗(T̃ )eβ

∗′x+ρ∗H(β∗) − e−Λ∗(T̃ )eβ
∗′x − e−Λ0(T̃ )eβ

′
0x+ρ0H(β0)

+ e−Λ0(T̃ )eβ
′
0x
}

= e−Λ∗(T̃ )eβ
∗′x − e−Λ0(T̃ )eβ

′
0x , (13)
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where p = eγ
′x

1+eγ′x
and p∗ = eγ

∗′x

1+eγ∗′x
. Suppose that p 6= 0 and p∗ 6= 0. First, when ρ0 = 0, the

above equation equation reduces to

−p∗
{
e−Λ∗(T̃ )eβ

∗′x+ρ∗H(β∗) − e−Λ∗(T̃ )eβ
∗′x
}

= e−Λ∗(T̃ )eβ
∗′x − e−Λ0(T̃ )eβ

′
0x .

Because the right-hand side of is independent of γ∗, it implies

e−Λ∗(T̃ )eβ
∗′x+ρ∗H(β∗) − e−Λ∗(T̃ )eβ

∗′x
= 0.

This equation holds only when ρ∗ = 0 or β∗ = 0. However, if β∗ = 0, we have e−Λ∗(T̃ ) −

e−Λ0(T̃ )eβ
′
0x = 0. Then, β0 must be 0 based on condition 3.1, which contradicts with our

model assumption. Therefore, we have ρ∗ = 0. Then, e−Λ∗(T̃ )eβ
∗′x − e−Λ0(T̃ )eβ

′
0x = 0. This

further implies that Λ∗ = Λ0 and β∗ = β0. Next, when ρ0 6= 0, because the right-hand side

(13) is independent of γ, we can conclude that p = p∗, which implies γ∗ = γ0. Furthermore,

because the right-hand side of (13) is also independent of γ∗, we can show that Λ∗ = Λ0 and

β∗ = β0, which further implies that ρ∗ = ρ0. Therefore, we have Θ∗ = Θ0 and Λ∗ = Λ0.

Then, by Helly’s theorem, we have Θ̂n → Θ0 and Λ̂n → Λ0 a.s. Since both Λ̂n and Λ0 are

increasing and bounded functions on [0, τ ], the point-wise convergence can be strengthened

to the uniform convergence. The consistency results are proved.

The asymptotic normality of Θ̂ can be similarly derived following the nonparametric

maximum likelihood estimation theory for censored data (e.g. Zeng and Lin 2007) and its

proof is omitted for brevity. Here, we provide the definition of the information matrix

I(Θ0). Recall that the observed log likelihood for subject i is

li(Λ,Θ) = δi log
{
λ(T̃i)gi(Λ,Θ)eβ

′xi
}

+ logS(T̃i,Λ,Θ).

The score for Θ is

∂li
∂Θ

=

∫ τ

0

Wi(t,Λ,Θ)dMi(t,Λ,Θ),
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whereMi(t,Λ,Θ) = Ni(t)−
∫ t

0
Yi(s)gi(Λ,Θ)eβ

′xidΛ(s), andWi(t,Λ,Θ) = (x′i+
∂gi(Λ,Θ)

∂β′

gi(Λ,Θ)
,
∂gi(Λ,Θ)

∂ρ

gi(Λ,Θ)
,
∂gi(Λ,Θ)

∂γ′

gi(Λ,Θ)
)′.

The efficient score for Θ is defined as

Seff,i =

∫ τ

0

[
Wi(t,Λ0,Θ0)− aeff,i(t) + {1− gi(Λ0,Θ0)}eβ′0xi

∫ t

0

aeff,i(s)dΛ0(s)

]
dMi(t,Λ0,Θ0),

where aeff,i satisfies that

E

(∫ τ

0

[
Wi(t,Λ0,Θ0)− aeff,i + {1− gi(Λ0,Θ0)}eβ′0xi

∫ t

0

aeff,i(s)dΛ0(s)

]′
dMi(t,Λ0,Θ0)

×
∫ τ

0

[
a∗(t)− {1− gi(Λ0,Θ0)}eβ′0xi

∫ t

0

a∗(s)dΛ0(s)

]
dMi(t,Λ0,Θ0)

)
= 0

for all a∗. Then the information matrix for Θ is defined as I(Θ0) = limn→∞ n
−1
∑n

i=1 E(Seff,iS
′
eff,i).

C Calculation of ∇2g(Θ̂|Θ̂)

Here, we provide the expression of ∇2g(Θ̂|Θ̂) in (8). Define Dj = eβ
′xj(1 − A(k)

j ), Hj =∑n
l 6=jWjlβ

′xl,Gj =
∑n

l 6=jWjlxl, Ej = eβ
′xjA

(k)
j eρHj ,Mj = xj+ρGj, and Fi =

∑n
j=1 I(T̃j ≥
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T̃i)(Dj + Ej). Then, we have

∂g(Θ|Θ̂(k))

∂ρ
=

n∑
i=1

δi

{
A

(k)
i Hi −

∑n
j=1 I(T̃j ≥ T̃i)EjHj

Fi

}
,

∂g(Θ|Θ̂(k))

∂β
=

n∑
i=1

δi

{
xi + ρA

(k)
i Gi −

∑n
j=1 I(T̃j ≥ T̃i)(Djxj + EjMj)

Fi

}
,

∂g(Θ|Θ̂(k))

∂γ
=

n∑
i=1

x∗i

(
A

(k)
i −

eγ
′x∗i

1 + eγ
′x∗i

)
,

∂2g(Θ|Θ̂(k))

∂ρ2
= −

n∑
i=1

δi
Fi
∑n

j=1 I(T̃j ≥ T̃i)EjH
2
j − {

∑n
j=1 I(T̃j ≥ T̃i)EjHj}2

F 2
i

,

∂2g(Θ|Θ̂(k))

∂γ∂γ ′
= −

n∑
i=1

x∗ix
∗′
i

eγ
′x∗i

(1 + eγ
′x∗i )2

,

∂2g(Θ|Θ̂(k))

∂β∂β′
= −

n∑
i=1

{
δi

∑n
j=1 I(T̃j ≥ T̃i)(Djxjx

′
j + EjMjM

′
j)

Fi

+

∑n
j=1 I(T̃j ≥ T̃i)(Djxj + EjMj)

∑n
j=1 I(T̃j ≥ T̃i)(Djx

′
j + EjM

′
j)

F 2
i

}
,

∂2g(Θ|Θ̂(k))

∂ρ∂β
=

n∑
i=1

δi

{
A

(k)
i Gi −

∑n
j=1 I(T̃j ≥ T̃i)(EjHjMj + EjGj)

Fi

+

∑n
j=1 I(T̃j ≥ T̃i)(Djxj + EjMj)

∑n
j=1 I(T̃j ≥ T̃i)EjHj

F 2
i

}
.

In addition, ∂2g
∂ρ∂γ

and ∂2g
∂β∂γ′

are 0. In the above expressions, setting Θ = Θ̂(k) = Θ̂, we

obtain the corresponding components of ∇2g(Θ̂|Θ̂).
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Figure 1: Plots of the true susceptible status and estimated posterior susceptible probabilities
based on a simulated data. Note Ω denotes the observed data, and ξ is the susceptibility indi-
cator, whose value is represented by color intensity varying from white (corresponds to 0) to red
(corresponds to 1).
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Figure 2: Kaplan-Meier curves for times to becoming the players of the mobile game.
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Figure 3: Plot of the network and the estimated posterior susceptible probabilities for the mobile
game data. The values of the estimated posterior susceptible probabilities are represented by the
color intensity (white corresponds to 0, while red corresponds to 1).
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Figure 4: Distribution of the estimated posterior susceptible probabilities for the users in the
mobile game data.
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