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Abstract: Estimating optimal individualized treatment rules (ITRs) in single or

multi-stage clinical trials is one key solution to personalized medicine and has

received more and more attention in statistical community. Recent development

suggests that using machine learning approaches can significantly improve the

estimation over model-based methods. However, proper inference for the esti-

mated ITRs has not been well established in machine learning based approaches.

In this paper, we propose a entropy learning approach to estimate the optimal in-

dividualized treatment rules (ITRs). We obtain the asymptotic distributions for

the estimated rules so further provide valid inference. The proposed approach

is demonstrated to perform well in finite sample through extensive simulation

studies. Finally, we analyze data from a multi-stage clinical trial for depression

patients. Our results offer novel findings that are otherwise not revealed with

existing approaches.

Key words and phrases: Dynamic treatment regime, entropy learning, personal-

ized medicine.



1. INTRODUCTION

1. Introduction

One important goal in personalized medicine is to develop a decision support

system to provide the adequate management for individual patients with

specific diseases. Estimating individualized treatment rules (ITRs) using

evidence from single- or multi-stage clinical trials provides the key solu-

tion to develop such a system. Development of powerful methods for the

estimation has received more and more attention in statistical community.

Early methods for estimating ITRs include Q-learning (Watkins and Dayan,

1992; Murphy, 2005; Chakraborty et al., 2010; Goldberg and Kosorok, 2012;

Laber et al., 2014; Song et al., 2015) and A-learning (Robins et al., 2000;

Murphy, 2003), where Q-learning models the conditional mean of the out-

come given historical covariates and treatment using a well-constructed sta-

tistical model and A-learning models the contrast function that is sufficient

for treatment decision.

Recently, Zhao et al. (2012) discovered that it is possible to cast the es-

timation of the optimal regime into a weighted classification problem. Thus,

Zhao et al. (2012, 2015) proposed an outcome weighted learning (OWL) to

directly optimize the approximate expected clinical outcome, where the ob-

jective function is a hinge loss weighted by individual outcomes. Although

the latter has been shown to outperform the model-based approaches as in
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Q- and A-learning in numerical studies and asymptotic behavior might be

established due to its convexity Hjort and Pollard (2011), there is no valid

inference procedure for the parameters in the optimal treatment rules due

to non-differentiability of the hinge loss near decision boundary, and the

minimization operator is more or less heuristic.

In this paper, we propose a class of smooth-loss based outcome weighted

learning methods to estimate the optimal ITRs, among which one special

case of the proposed losses is a weighed entropy loss (Murphy, 2012). By

using continuously-differentiable loss functions, we not only maintain the

Fisher consistency of the derived treatment rule, but also are able to obtain

proper inference for the parameters in the derived rule. We can further

quantify the uncertainty of value function under the estimated treatment

rule, which is potentially useful for designing future trials and comparing

with other non-optimal treatment rules. Numerically, when comparing to

the existing inference for the model-based approaches, such asthe bootstrap

approach for Q-learning, our inference procedure does not require tuning

parameters and shows more accurate inference in finite sample numerical

studies.

We notice that Bartlett et al. (2006) established a profound conceptual

work on classification loss for quite general setting. However, to link such
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work to recursive or dynamic optimization is not trivial. We work under

a logistic loss to achieve this. Luedtke and van der Laan (2016) tried to

unify surrogate loss function for outcome-dependent learning. Their way

of showing the validity is different from our derivation. Our justification

is more intuitive and our computing algorithm is also different. While

super learning is quite general and powerful method, logistic regression

can be implemented easily and fit our needs directly. Moreover, asymptotic

properties of our estimators are established for conducting proper inference,

which is not addressed in the two above-mentioned literatures.

The paper is structured as follows. In Section 2, we introduce the

proposed entropy learning method for single- and multi-stage settings. In

Section 3, we provide the asymptotic properties of our estimators. In Sec-

tion 4, simulation studies are conducted to assess the performance of our

methods. In Section 5, we apply the entropy learning to the well-known

STAR*D study. We conclude the paper in Section 6. Technical proofs are

provided in the supplementary materials.
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2. Method

2.1 Smooth surrogate loss for outcome weighted learning

To motivate our approach of choosing a smooth surrogate loss for learning

the optimal ITRs, we first consider data from one single-stage randomized

trial with two treatment arms. Treatment assignment is denoted by A ∈

A = {−1, 1}. Patient’s prognostic variables are denoted as a p-dimensional

vector X. We use R to denote the observable clinical outcome, also called

the reward, and assume that R is positive and bounded from above, with

larger values of R being more desirable. Data consist of {(Xi, Ai, Ri) : i =

1 . . . , n}.

For a given treatment decision D, which maps X to {−1, 1}, we denote

PD as the distribution of (X, A,R) given that A = D(X). Then an optimal

treatment rule is a rule that maximizes the value function

ED(R) = E
{
R

I(A = D(X))

Aπ + (1− A)/2

}
, (2.1)

where π = P (A = 1|X). Following Qian and Murphy (2011), it can be

shown that the maximization problem is equivalent to the problem of min-

imizing

E
{
R

I(A 6= D(X))

Aπ + (1− A)/2

}
. (2.2)
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The latter is a weighted classification error so can be estimated by the

observed sample using

n−1

n∑
i=1

{
Ri

I(Ai 6= D(Xi))

Aiπ + (1− Ai)/2

}
. (2.3)

Due to the discontinuity and nonconvexity of the 0-1 loss on the right hand

side of (2.2), direct minimization of (2.3) is difficult and parameter inference

is also infeasible. To alleviate this challenge, the hinge loss from the support

vector machine (SVM) was proposed to substitute the 0-1 loss previously

(Zhao et al., 2012, 2015) to alleviate the non-convexity and computational

problem. However, due to the non-differentiability of the hinge loss, the

inference remains challenging. This motivates us to seek a more smooth

surrogate loss function for estimation.

Consider an arbitrary surrogate loss h(a, y) : {−1, 1} × R 7→ R. Then

by replacing the 0-1 loss by this surrogate loss, we estimate the treatment

rule by minimizing

Rh(f) = E
{
R

h(A, f(X))

Aπ + (1− A)/2

}
. (2.4)

To evade the non-convexity, we require that h(a, y) be convex in y. Fur-
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thermore, simple algebra gives

E
{

R

Aπ + (1− A)/2
h(A, f(X))

∣∣∣X = x

}
= E[R|X = x, A = 1]h(1, f(x)) + E[R|X = x, A = −1]h(−1, f(x))

= axh(1, f(x)) + bxh(−1, f(x)),

where ax = E[R|X = x, A = 1] and bx = E[R|X = x, A = −1]}. Hence, for

any given x, the minimizer for f(x), denoted by yx, solves equation

axh
′(1, y) + bxh

′(−1, y) = 0,

where h′(a, y) is the first derivative of h(a, y) with respect to y. To ensure

that the surrogate loss still leads to the correct optimal rule which is equiv-

alent to sgn(ax − bx), we require that such a solution has the same sign as

(ax−bx). On the other hand, since axh
′(1, y)+bxh

′(−1, y) is non-decreasing

in y, we conclude that for ax > bx, if axh
′(1, 0)+bxh

′(−1, 0) ≤ 0, then the so-

lution yx should be positive; while for ax < bx, if axh
′(1, 0)+bxh

′(−1, 0) ≥ 0,

then the solution yx should be negative. In other words, one sufficient con-

dition to ensure the Fisher consistency is

(ax − bx)(axh
′(1, 0) + bxh

′(−1, 0)) ≤ 0.

However, since ax and bx can be arbitrary non-negative value, this condition

holds if and only if

h′(1, 0) = −h′(−1, 0) and h′(1, 0) ≤ 0.
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In conclusion, the choice of h(a, y) should satisfy

(I) For a = −1 and 1, h(a, y) is twice differentiable and convex in y;

(II) h′(1, 0) = −h′(−1, 0) and h′(1, 0) ≤ 0.

There are many loss functions which satisfy the above two conditions.

Particularly, we can consider loss functions of the form h(a, y) = −ay+g(y).

Then the first condition automatically holds if g is twice differentiable and

convex. The first equation in the second condition also holds. Finally,

since h′(1, 0) = −1 + g′(0), the second part holds if we choose g such that

g′(0) = 0. One special case is to choose

g(y) = 2 log(1 + exp(y))− y,

and the corresponding loss function is

h(a, y) = −(a+ 1)y + 2 log(1 + exp(y)),

which corresponds to the entropy loss for logistic regression (Figure 1).

In our subsequent development, we will focus on using this loss function,

although the results apply to any general smooth loss satisfying those two

conditions. Correspondingly, (2.4) becomes:

R(f) = E
{

R

Aπ + (1− A)/2
[−0.5(A+ 1)f(X) + log(1 + exp(f(X)))]

}
.(2.5)
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Figure 1: Comparison of loss functions.

2.2 Learning optimal ITRs using the entropy loss

Now suppose the randomized trial involves T stages where patients might

receive different treatments across the multiple stages. With some abuse

of notation, we use Xt, Rt and At to denote the set of covariates, clinical

outcome and corresponding treatment at stage t = 1, · · · , T , and let St =

(X1, A1, · · · ,Xt−1, At−1,Xt) be the history by t.

A dynamic treatment regime (DTR) is a sequence of deterministic de-

cision rules, d = (d1, · · · , dT ), where dt is a map from the space of his-
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tory information St, denoted by St, to the action space of available treat-

ments At = {−1, 1}. The optimal DTR is to maximize the expected total

value function Ed(
∑T

t=1Rt), where the expectation is taken with respect

to the distribution of (X1, A1, R1, · · · ,XT , AT , RT ) given the treatment as-

signment At = dt(St).

DTRs aim to maximize the expected cumulative rewards and hence the

optimal treatment decision at the current stage must depend on subsequent

decision rules. This motivates a backwards recursive procedure which esti-

mates the optimal decision rule at future stages first, and then the optimal

decision rule at current stage by restricting the analysis to the subjects

who have followed the estimated optimal decision rules thereafter. Assume

that we observe data (X1i, A1i, R1i · · · ,XT i, AT i, RT i), i = 1, · · · , n, form-

ing n independent and identically distributed patient trajectories, and let

Sti = {(X1i, A1i, · · · , At−1,i,Xti) : i = 1, . . . , n} for 1 ≤ t ≤ T . Denote

π(At,St) = Atπt − (1 − At)/2 where πt = P (At = 1|St) for t = T, . . . , 1.

Suppose that we already possess the optimal regimes at stages t+ 1, · · · , T

and denote them as d∗t+1, · · · , d∗T . Then the optimal decision rule at stage

t, d∗t (St) should maximize

E

{( T∑
j=t

Rj

)∏T
j=t+1 I(Aj = d∗j(Sj))∏T

j=t π(Aj,Sj)
I(At = dt(St))

∣∣St} ,
where we assume all subjects have followed the optimal DTRs after stage
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t. Hence, d∗t is a map from St to {−1, 1} which minimizes

E

{( T∑
j=t

Rj

)∏T
j=t+1 I(Aj = d∗j(Sj))∏T

j=t π(Aj,Sj)
I(At 6= dt(St))

∣∣St} .
Following (2.5), we consider the entropy learning framework where the de-

cision function at stage t is given as

dt(St) = 2I{(1 + exp(−ft(Xt)))
−1 > 1/2} − 1 = sgn{ft(Xt)}, (2.6)

for some function ft(·). Here for simplicity, as defined in equation (2.6),

the decision rule is assumed to be depending on the history information St

through Xt only. Although St = St−1 ∪ {At−1,Xt}, any elements in St−1

and At−1 can be included as one the covariates in Xt and hence such an

assumption is not stringent at all. In particularly, our method is still valid

when Xt is set to be St. Given the observed samples, we obtain estimators

for the optimal treatments using the following backward procedure.

Step 1. Minimize

− 1

n

n∑
i=1

{
RT i

π(AT i,ST i)
[0.5(AT i + 1)fT (XT i)− log(1 + exp(fT (XT i)))]

}
.(2.7)

to obtain the stage-T optimal treatment regime. This is the same as the

single-stage treatment selection procedure. Let f̂T be the estimator of fT

obtained by minimizing (2.7). For a given ST , the estimated optimal regime

is then given by d̂T (ST ) = sgn(f̂T (XT )).
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Step 2. For t = T − 1, · · · , 1, we sequentially minimize

−n−1

n∑
i=1

{(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

[
0.5(Ati + 1)ft(Xti)

− log(1 + exp(ft(Xti)))
]}
, (2.8)

where d̂t+1, · · · , d̂T are obtained prior to stage t. Let f̂t be the estimator

of ft obtained by minimizing (2.8). For a given St, the estimated optimal

regime is then given by d̂t(St) = sgn(f̂t(Xt)).

LetHpt be the set of all functions fromRpt toR. As outlined in Section

2.1, the following proposition justifies the validity of our approach.

Proposition 1. Suppose

ft = arg maxf∈Hpt
E
{(
∑T

j=tRj)
∏T

j=t+1 I(Aj = sgn(fj(Xj)))∏T
j=t π(Aj,Sj)[

0.5(At + 1)f(Xt)− log(1 + exp(f(Xt)))
]}
, (2.9)

backwards through t = T, T − 1, . . . , 1. We have d∗j(Sj) = sgn(fj(Xj)) for

j = 1, . . . , T .

Let Vt = E(d∗t ,...,d
∗
T )
∑T

i=tRi be the maximal expected value function at

stage t. After obtaining the estimated decision rules d̂T , . . . , d̂t, for simplic-

ity, we estimate Vt by

V̂t = n−1

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

I(Ati = d̂t(Sti))

}
.(2.10)
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We remark that our results also fit into the more general and robust esti-

mation framework constructed by Zhang et al. (2012), Zhang et al. (2013).

3. Asymptotic Theory for Linear Decisions

Suppose the stage-t covariates Xt is of dimension pt for 1 ≤ t ≤ T , and

assume that the function ft(Xt) in (2.7) and (2.8) is of the linear form:

ft(Xt) = (1,X>t )βt for some βt ∈ Rpt+1. (2.7) and (2.8) can then be carried

out as a weighted logistic regression. In this section, we establish the asymp-

totic distributions for the estimated parameters and value functions under

the aforementioned linear decision assumption. We remark that when the

true unknown solution is nonlinear, similar to other linear learning rules,

our approach can only be understood as finding the best approximation of

the true solution (2.9) in the linear space.

We consider the multi-stage case only as results for the single-stage case

is exactly the same as those for stage T . For the multi-stage case, we denote

X∗t = (1,X>t )> and the observations X∗ti = (1,X>ti)
> for t = 1, . . . , T and

i = 1, . . . , n. The n × (pt + 1) design matrix for stage t is then given by

Xt,1:n = (X∗t1, . . . ,X
∗
tn)>. Let β0

t = (β0
t0, β

0
t1, . . . , β

0
tpt)
> be the solution of

(2.9) at stage t and let β̂t = (β̂t0, β̂t1, . . . , β̂tpt)
> be its estimator obtained

by solving (2.7) when t = T and (2.8) when t = T − 1, . . . , 1.
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3.1 Parameter estimation

By setting the first derivative of (2.8) to be 0 for stage t where 1 ≤ t ≤ T−1,

we have

0 = − 1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)[

.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti.

The Hessian matrix of the left hand side of the above equation is:

Ht(βt) =
1

n
X>t,1:nDt(βt)Xt,1:n,

where Dt(βt) = diag{dt1, . . . , dtn} with

dti =
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

· exp(X∗>ti βt)

(1 + exp(X∗>ti βt))
2
.

Since the Rti’s are positive, Ht(βt) is positive definite with probability one.

Consequently, the objective function as in (2.8) is strictly convex, implying

the existence and uniqueness of β̂t for t = T − 1, . . . , 1. This is also true for

t = T using a similar argument. To obtain the asymptotic distribution of

the estimators, we would need the following regularity conditions:

(A1) It(βt) is finite and positive definite for any βt ∈ Rpt+1, t = 1, . . . , T ,

where

It(βt) = E
(
∑T

j=tRj)
∏T

j=t+1 I(Aj = dj(Sj))∏T
j=t π(Aj,Sj)

· exp(X∗>t βt)X
∗
tX
∗>
t

(1 + exp(X∗>t βt))2
.
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(A2) There exists a constant BT such that Rt < BT for t = 1, . . . , T . In

addition, we assume that Xt1i, . . . ,Xtni are i.i.d. random variables

with bounded support for i = 1, . . . , pt. Here Xtij is the jth element

of Xti.

(A3) Denote Yt = X∗>t β0
t and let gt(y) be the density function of Yt for

1 ≤ t ≤ T . We assume that y−1gt(y) → 0 as y → 0. In addition, we

assume that there exists a small constant b such that for any positive

constant C and β ∈ Nt,b := {β : |β − β0
t |∞ < b}, P (|X∗>t β| < Cy) =

O(y) as y → 0.

(A4) There exist constants 0 < ct1 < ct2 < 1 such that ct1 < πt < ct2 for

t = 1, . . . , T and P (
∏T

j=1 I(Aj = d∗j(Sj)) = 1) > 0.

Remark 1. By its definition, It(βt) is positive semidefinite. In A1 we

assume that It(βt) is positive definite to ensure that the true optimal treat-

ment rule is unique and estimable. The boundness assumption A2 can be

further relaxed using some truncation techniques. Assumption A3 indicates

that the probability of Yt ≤ Cn−
1
2 is of order o(n−

1
2 ). This is in some sense

necessary to ensure that the optimal decision is estimable, and is also essen-

tial for establishing asymptotic normality without an additional Bernoulli

point mass as in Laber et al. (2014). Assumption A4 is to ensure that
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the treatment design is valid such that the probability of a patient being

assigned to the unknown optimal treatments is non-negligible.

Theorem 1. Under assumptions A1-A4, we have for t = T, . . . , 1, for any

constant κ > 0, there exists a large enough constant Ct,

P

(
|β̂t − β0

t |∞ > Ct

√
log n

n

)
= o

(
log n

n

)
, (3.1)

and given X∗t , for any x > 1 and x = o(
√
n), we have

P

(
|X∗>t (β0

t − β̂t)| >
xWt√
n

∣∣∣X∗t) =

{
1 +O

( x3

√
n

)}
Φ(−x) +O

( log n√
n

)
,(3.2)

where W 2
t = Var(X∗>t (β0

t − β̂t)) and Φ(·) is the cumulative distribution

function of the standard normal distribution. In addition, for the ith sample

we have

E

∣∣∣∣∣
T∏
j=t

I(Aji = d̂j(Sji))−
T∏
j=t

I(Aji = d∗j(Sji))

∣∣∣∣∣ = o

(
log n

n

)
. (3.3)

Furthermore we have,

√
nIt(β

0
t )(β̂t − β0

t )→ N(0,Γt), (3.4)

where Γt = (γtjk)1≤j,k≤p+1 with

γtjk = E

[
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = dj(Sji))∏T
j=t π(Aji,Sji)

]2

·
[
0.5(Ati + 1)− exp(X∗>ti β

0
t )

1 + exp(X∗>ti β
0
t )

]2

X∗tijX
∗
tik,

and X∗tij is the jth element of X∗ti.



3. ASYMPTOTIC THEORY FOR LINEAR DECISIONS 17

Remark 2. We remark that the proof of Theorem 1 is not straightforward

as for stage t < T , the n terms in the summation of the objective function

(2.8) are weakly dependent to each other. Note that the estimation errors

of the indicator functions in (2.8) might aggregate when the estimators are

obtained sequentially. We thus need to show that the estimation errors

of these indicator functions are well controlled. By establishing Bernstein-

type concentration inequalities (3.1) and large deviation results (3.2) for the

parameter estimation, we establish error bounds (3.3) for the estimation of

these indicator functions. The asymptotic distribution of the estimators

can then be established subsequently. Detailed proofs are provided in the

supplementary material. On the other hand, from the proofs we can see

that the asymptotic results we obtained in the above theorem would also

hold if other loss functions satisfying the two conditions raised in Section

2.1 are used, with some corresponding modifications to Condition (A1) and

the covariance matrix.

In practice we estimate Γt in Theorem 1 by Γ̂t = (γ̂tjk)1≤j,k≤pt+1 with

γ̂tjk =
1

n

n∑
i=1

[
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

]2

·

[
0.5(Ati + 1)− exp(X∗>ti β̂t)

1 + exp(X∗>ti β̂t)

]2

X∗tijX
∗
tik.

The covariance matrix of
√
n(β̂t − β0

t ) can then be estimated by: Σ̂t =
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H−1
t (β̂t)Γ̂tH

−1
t (β̂t).

3.2 Estimating the optimal value function

In this subsection, we establish the asymptotic normality of the estimated

maximal expected value function defined in (2.10) when the f(x) is a linear

function of x.

Theorem 2. Under the same assumptions of Theorem 1, we have,

√
n(V̂t − Vt)→ N(0,ΣVt), t = 1, . . . , T,

where V̂t is defined as in (2.10) and,

ΣVt = E

{
(
∑T

j=tRj)
∏T

j=t+1 I(Aj = dj(Sj))∏T
j=t π(Aj,Sj)

I(At = dt(St))

}2

−{
E

(
∑T

j=tRj)
∏T

j=t+1 I(Aj = dj(Sj))∏T
j=t π(Aj,Sj)

I(At = dt(St))

}2

.

When conducting inferences, ΣVt can be simply estimated by their em-

pirical estimators:

Σ̂Vt =
1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

I(Ati = d̂t(Sti))

}2

−{
1

n

n∑
i=1

(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d̂j(Sji))∏T
j=t π(Aji,Sji)

I(Ati = d̂t(Sti))

}2

.
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3.3 Testing Treatment Effects

In practice, treatments in some stages might not be effective for some pa-

tients. When the true optimal treatment rule is linear in Xt, non-significant

treatment effect on stage t for some 1 ≤ t ≤ T is equivalent to X∗>t β0
t = 0.

Here X∗t = (1,X>t )>. From Theorem 1 we immediately have that given Xt,

X∗>t β̂t → N(X∗>t β0
t ,

1
n
X∗>t It(β

0
t )
−1ΓtIt(β

0
t )X

∗
t ). Therefore, we can then use

X∗>t β̂t as a test statistic for testing the significance of treatment effects: for

a realization x∗t and a given significance level α, we reject H0 : x∗>t β0
t = 0

if
√
n|(x∗>t Ît(β̂t)

−1Γ̂tÎt(β̂t)x
∗
t )
−1/2x∗>t β̂t| > Φ(1 − α/2), where Ît(β̂t), Γ̂t(β̂t)

are empirical estimators of It,Γt evaluated at β̂t and Φ(·) is the cumulative

distribution function of the standard normal distribution.

Before we proceed to numerical studies, we remark that theoretical

results we obtained in this section would still be valid when the model is

mis-specified. However, the parameters we are estimating are the maximizer

of (2.5) under the linear space, instead of the parameters in the optimal

decision rules.

4. Simulation Study

We next carry out numerical studies to assess the performance of our pro-

posed methods.



4. SIMULATION STUDY20

One-stage. The treatment A is generated uniformly from {−1, 1} and

is independent of theprognostic variables X = (x1, . . . , xp)
>. We set the

reward R = Q(X) + T (X, A) + ε where T (X, A) reflects the interaction

between treatment and prognostic variables and ε is a random variable

such that ε = |Y |/10 where Y has a standard normal distribution. Such

a folded normal error is chosen since R is restricted to be positive. We

consider the following models.

Model 1. x1, x2, x3 are generated independently and uniformly in

[−1, 1]. We generate the reward R = Q(X) + T (X, A) + ε by setting

T (X, A) = 3(.4− x1 − x2)A, Q(X) = 8 + 2x1 − x2 + .5x3. In this case, the

decision boundary is only determined by x1 and x2.

Model 2. X = (x1, x2, x3)> is generated from a multivariate normal

distribution with mean zero and covariance matrix Σ = (σij)3×3 where σij =

.5|i−j| for 1 ≤ i, j ≤ 3. We generate the reward R by setting T (X, A) =

(.8 − 2x1 − 2x2)A, Q(X) = 5 + .5x2
1 + .5x2

2 + .5(x2
3 + .5x3). The decision

boundary of this case is also determined by x1 and x2.

Next we consider some multi-stages cases. The treatments At are gen-

erated independently and uniformly from {−1, 1} and are independent to

the p-dimensional vector of prognostic variables Xt = (xt1, . . . , xtp)
>, t =

1, . . . , T . ε is generated in the same way as in the single stage.
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Two-stage.

Model 3. Stage 1 outcome R1 is generated as follow: R1 = (1 −

5x11 − 5x12)A1 + 11.1 + .1x11 − .1x12 + .1x13 + ε where x11, x12, x13 are

generated independently from a uniform distribution in [−1, 1]. Stage 2

outcome R2 is generated by R2 = .5A1A2 + 3 + (.2−x21−x22)A2 + ε where

x2i = x1i, i = 1, 2, 3. In this case the covariates from the two stages are

identical.

Model 4. We use the same setting as Model 3 except that we set

x2i = .8x1i + .2Ui, i = 1, 2, 3 where Ui is randomly generated from U [−1, 1].

In this case covariates from the two stages are different and correlated.

4.1 Estimation and classification performance

We first examine the performance of the estimated coefficient parameters,

the corresponding value functions and the classification accuracy.

For stage t, given a sample size n, we repeat the simulation for 2000

times and compute the coverage rate CRtj which is the proportion that

[β̂tj − 1.96σ̂tjj, β̂tj + 1.96σ̂tjj] covers the true parameter βtj for j = 0, . . . , p,

where σ̂tjj is the (j, j)th element of Σ̂t. CRVt is defined similarly for the

coverage rate of the value function. A validation set with 100,000 observa-

tions is simulated to compute the oracle values and assess the performance
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Model 1 Model 2

n CRV1
CR10 CR11 CR12 CR13 CRV1

CR10 CR11 CR12 CR13

50 0.927 0.948 0.950 0.938 0.945 0.946 0.944 0.937 0.931 0.924

100 0.936 0.950 0.947 0.949 0.944 0.942 0.947 0.949 0.945 0.940

200 0.942 0.954 0.947 0.955 0.952 0.951 0.950 0.950 0.953 0.947

400 0.940 0.949 0.960 0.954 0.944 0.946 0.963 0.952 0.949 0.933

800 0.944 0.944 0.953 0.947 0.943 0.951 0.955 0.952 0.954 0.943

Table 1: Coverage rates of the expected value function and coefficient pa-

rameters under Models 1 and 2.

of our approach.

We set the sample size to be n = 50, 100, 200, 400 and 800. Coverage

rates under Models 1-4 are given in Tables 1 and 2. For each replication

under each model, we also compute the misclassification rate in each stage.

Figure 2 gives the boxplots of the misclassification rates over 2000 replica-

tions for all four models.

From Tables 1 and 2 we observe that the coverage rates are close to the

nominal level (95%) and improve as the sample size increases, indicating

that the asymptotic normality of our estimators is well established. In

particular, the coverage rates of the coefficient parameter estimators are

very close to 95% even when the sample size is as small as 50. The boxplots

in Figure 2 also indicate that the misclassification rate of the estimated

decision rule decreases towards zero as the sample size increases.
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Model 3 Stage 1 Stage 2

n CRV1
CR10 CR11 CR12 CR13 CRV2

CR20 CR21 CR22 CR23

50 0.872 0.946 0.937 0.945 0.947 0.912 0.949 0.939 0.951 0.951

100 0.928 0.949 0.956 0.953 0.948 0.941 0.952 0.956 0.954 0.940

200 0.936 0.947 0.942 0.942 0.951 0.950 0.950 0.946 0.948 0.935

400 0.941 0.943 0.948 0.943 0.950 0.943 0.948 0.952 0.948 0.956

800 0.957 0.944 0.955 0.945 0.941 0.954 0.939 0.951 0.952 0.952

Model 4 Stage 1 Stage 2

50 0.865 0.948 0.944 0.941 0.947 0.908 0.942 0.948 0.942 0.942

100 0.908 0.951 0.939 0.954 0.940 0.942 0.955 0.943 0.947 0.949

200 0.941 0.940 0.943 0.951 0.948 0.948 0.948 0.954 0.954 0.951

400 0.945 0.944 0.946 0.956 0.952 0.948 0.943 0.951 0.947 0.950

800 0.954 0.949 0.946 0.957 0.953 0.951 0.950 0.963 0.952 0.950

Table 2: Coverage rates of the expected value function and coefficient pa-

rameters under Models 3 and 4.
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Note that the ultimate goal of dynamic treatment regimes is to max-

imize the value functions. We next compare our Entropy learning with

Q-learning and Outcome-weighted learning in terms of value function esti-

mation. Throughout this paper, Q-learning and Outcome-weighted learning

are implemented using the R package “DTRlearn”. In addition to Models

1-4, we also consider the following nonlinear cases.

Model 5. x1, x2, x3 are generated independently and uniformly in

[−1, 1]. We generate the rewardR = Q(X, A)+ε withQ(X, A) = [−T (X)(A+

1) + 2 log(1 + exp(T (X)))]−1, where T (X) = (x1 − x2 + 2x1x2).

Model 6. Same as Model 5 except that x1, x2, x3 are discrete variables

generated independently and uniformly in {−1, 0, 1}.

Model 7. Stage 1 outcome R1 is generated as follow: R1 = [0.2 −

T1(X1)(A1 + 1) + 2 log(1 + T1(X1))]−1 + ε where T1(X1) = x11 − x12 +

2x2
13 + 2x11x12 with x11, x12, x13 generated independently from a uniform

distribution in [−1, 1]. Stage 2 outcome R2 is generated by R2 = [0.05 +

(1 +A2)(1 +A1)/4−T2(X2)(A2 + 1) + 2 log(1 +T2(X2))]−1 + ε where x2i =

x1i, i = 1, 2, 3 and T2(X2) = x21 − x22 + 2x2
23 + 2x21x22.

Model 8. Same as Model 7 except that x11, x12, x13 are discrete vari-

ables generated independently and uniformly in {−1, 0, 1}.

For each model, we generate 200 random samples and the corresponding
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Model E-Learning Q-Learning OW-Learning

Model 1 10.2(0.1) 10.3(0.0) 10.3(0.0)

Model 2 9.4(0.1) 9.4(0.0) 9.4(0.0)

Model 3 Stage 2 3.7(0.1) 3.7(0.0) 3.7(0.0)

Model 3 Stage 1 14.5(0.4) 15.0(0.0) 15.0(0.0)

Model 4 Stage 2 3.6(0.1) 3.6(0.0) 3.6(0.00)

Model 4 Stage 1 14.5(0.6) 15.0(0.0) 15.0(0.0)

Model 5 1.8(0.0) 1.7(0.0) 1.8(0.0)

Model 6 4.8(0.1) 4.1(0.1) -(-)

Model 7 Stage 2 1.5(0.0) 1.5(0.0) 1.5(0.0)

Model 7 Stage 1 1.1(0.1) 1.0(0.0) 1.1(0.1)

Model 8 Stage 2 3.0(0.1) 2.8(0.2) -(-)

Model 8 Stage 1 1.9(0.3) 0.9(0.2) -(-)

Table 3: Comparison of value functions using Entropy learning (E-learning),

Q-learning and Outcome-weighted learning (OW-Learning) under Models

1-8.

estimated treatment rules used to compute the value function using (2.3)

with a validation set of size n = 500, 000. The above procedure is repeated

for 100 times and the results are reported in table 3.

From Table 3 we note the value functions of our Entropy learning

method are comparable to those of Q-learning and Outcome-weighted learn-

ing under models 1-4. However, under Models 5 and 7, where the true

treatment regimes are nonlinear, the value functions of Entropy learning

and Outcome-weighted learning are very close and seem to be slightly bet-
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ter than those of Q-learning. However, when we consider discrete covariates

in Models 6 and 8, Outcome-weighted learning can hardly produce any re-

sult due to a very large condition number in solving a system of equations.

4.2 Testing X∗>t β0
t = 0

In the dynamic treatment regime literature, the non-regularity condition

P (X∗>t β0
t = 0) = 0 is usually required (for example in Q-learning) to enable

parameter inference. Here in this study we study the performance of testing

X∗>t β0
t = 0 based on our entropy learning approach.

• Case 1: testing X∗>β0
1 = 0 under model 1. Let X∗ = (1, x1, x2, x3)>

be the covariate of a new observation and β0
1 = (β0

10, β
0
11, β

0
12, β

0
13)>

be the true parameters. By setting x1 = x3 = 1 and x2 = −(β0
10 +

x1β
0
11 + x3β

0
13)/β0

12 we have X∗>β0
1 = 0.

• Case 2: testing X∗>1 β0
1 = 0 under model 4. We set x11 = x13 = −1

and x12 = −(β0
10 + x11β

0
11 + x13β

0
13)/β0

12.

We set n = 50, 100, 200, 400. Note that

X∗>t β̂t → N(X∗>t β0
t ,X

∗>
t It(β

0
t )
−1ΓtIt(β

0
t )Xt).

We use X∗>t Ît(β̂t)
−1Γ̂tÎt(β̂t)X

∗
t to estimate the variance of X∗>t β̂t where Ît

and Γ̂t are the empirical estimators of It and Γt. For each case we run
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the simulation for p=1000 times and for each replication we compute the

p-value of X∗>t β̂t. P-value plots are given in Figures 3 and 4. We can

see that the distribution of the p-values can be well fitted by the uniform

distribution in [0, 1], indicating that our tests can perform well in detecting

non-significant treatment effect.

4.3 Type I error comparison with Q-learning

We next assess the performance of hypothesis tests since it is often of in-

terest to investigate the significance of coefficient parameters. Note that in

Models 3 and 4, we have β13 = β23 = 0. We then compute the type I error

for testing β13 = 0 and β23 = 0. In the optimization problems (2.7) and

(2.8) decisions Ai are formularized as the weights of a weighted negative

log-likelihood. Consequently, unlike Q-learning (Zhao et al. (2009)), the

objective functions for the estimation of the parameters become continu-

ous functions and parameter inferences become feasible even without the

non-regularity condition. For comparison, we compute the same quantities

using the bootstrap scheme for Q-learning. We remark that the βij’s us-

ing Entropy learning and the βij’s using Q-learning are generally different,

but in Models 3 and 4, x13 and x23 were not involved in treatment selec-

tion part, and hence the true β’s in both entropy learning and Q-learning
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Model 3 Model 4

H0 : β13 = 0 H0 : β23 = 0 H0 : β13 = 0 H0 : β23 = 0

n Elearn Qlearn Elearn Qlearn Elearn Qlearn Elearn Qlearn

50 0.063 0.069 0.050 0.057 0.060 0.054 0.055 0.056

100 0.044 0.063 0.054 0.056 0.044 0.057 0.043 0.055

400 0.049 0.043 0.055 0.043 0.047 0.053 0.047 0.046

800 0.050 0.059 0.044 0.064 0.047 0.053 0.054 0.055

Table 4: Type I error comparison using Entropy learning and Q-learning,

where “Elearn” refers to Entropy learning and “Qlearn” refers to Q-

learning.

are zero. Here the significance level α is set to be 0.05 and we consider

n = 50, 100, 400, 800. The simulation is repeated for 2000 times and the

result is given in Table 4. From Table 4 we see that most of the type I

errors using entropy learning are closer to α = 0.05, which indicates that

our learning method can be more appropriate for testing the significance of

covariates.

5. Application to STAR*D

We consider a real data example extracted from the Sequenced Treatment

Alternatives to Relieve Depression (STAR*D) study funded by the Na-

tional Institute of Mental Health. STAR*D is a multisite, prospective,

randomized, multistep clinical trial of outpatients with nonpsychotic major
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depressive disorder; see Rush et al. (2004) and Sinyor et al. (2010) for more

study details. The complete trial involved four sequential treatment stages

(or levels), and patients were encouraged to participate in the next level

of treatment if they failed to achieve remission or adequate reduction in

symptoms.

Patients who did not experience a remission of symptoms during the

first level of the STAR*D study in which they initially took the antidepres-

sant citalopram, a selective serotonin reuptake inhibitor (SSRI) for up to

14 weeks had the option of continuing to level 2 of the trial where they

could explore additional treatment options designed to help them become

symptom-free (Rush et al. (2006)). Because there was only single treatment

for all patients in level 1, we will not discuss such data in this paper.

Level 2 of the study offered seven different treatments; four options

“switched”: the study participants from citalopram to a new medication

or talk therapy, and three options “augmented”: citalopram treatment by

adding a new medication or talk therapy to the citalopram they were al-

ready receiving. Data taken from Level 2 will be treated as the first stage

observations in this paper and we define A1 = −1 if the treatment option

is a switch and A1 = 1 if the treatment option is an augmentation.

During levels 1 and 2 of the STAR*D trial, which started with 2,876



5. APPLICATION TO STAR*D30

participants, about half of all patients became symptom-free. The other half

were then eligible to enter level 3 where as in level 2, patients were given

the choice of either switching medications or adding another medication to

their existing medication (Fava et al. (2006)). Data taken from level 3 of

this trial will be treated as the second stage observations in this paper and

we define A2 = −1 if the treatment option is a switch and A2 = 1 if the

treatment option is an augmentation.

After removing cases with missing values from the data files we obtain

a sample of 316 patients whose medical information from the two stages are

available. Among these 316 patients, 119 and 197 of them were respectively

assigned to the augmentation group and the switch group in Stage 1, 115

and 201 of them were respectively assigned to the augmentation group and

the switch group in Stage 2. The 16-item Quick Inventory of Depressive

Symptomatology-Self-Report (QIDS-SR(16)) scores were obtained at treat-

ment visits for the patients and considered as the primary outcome variable

in this paper. To accommodate with our model where the reward is positive

and “the larger the better”, we used R = c − QIDS-SR(16) as the reward

at each level where c is a constant that bounds the empirical QIDS-SR(16)

scores. In this study we simply set c = 30 so that all QIDS-SR(16) scores

are positive.
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Chronic Gender Age GMC

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1

Switch 0.29 (0.03) 0.29(0.03) 0.51 (0.04) 0.46(0.04) 43.99 (0.88) 45.78(0.84) 0.59 (0.04)

Augmentation 0.26 (0.04) 0.26(0.04) 0.49 (0.05) 0.57(0.05) 44.76 (1.05) 41.65(1.11) 0.56 (0.05)

GMC Anxiety Week QIDS-SR(16)

Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Switch 0.62(0.03) 0.76 (0.03) 0.74(0.03) 9.21 (0.30) 7.48 (0.34) 14.96 (0.29) 14.54 (0.31)

Augmentation 0.51(0.05) 0.70 (0.04) 0.73(0.04) 9.64 (0.40) 9.35 (0.46) 13.45 (0.37) 12.77 (0.37)

Table 5: Summary statistics for the covariates in the STAR*D study: for

continuous variables, we report means and standard deviations; for dichoto-

mous variables, we report proportions and standard deviations.

Following earlier analysts (eg. Kuk et al. (2010, 2014)), we consider

the following set of clinically meaningful covariates: (i) chronic depression

indicator: equals 1 if chronic episode > 2 years and 0 otherwise; (ii) gender:

male= 0 and female= 1; (iii) patient age (years); (iv) general medical condi-

tion (GMC) defined to be 1 for the presence of one or more general medical

conditions and 0 otherwise; (v) anxious feature defined to be 1 if Hamil-

ton Depression Rating Scale anxiety/somatization factor score ≥ 7 and 0

otherwise (Fava et al. (2008)); In addition, we also consider (vi) week: the

number of weeks patients had spent in the corresponding stage when the

QIDS-SR(16) scores at exit were determined and (vii) the baseline QIDS-

SR(16) scores at the corresponding stages. Summary of these covariate are

given in Table 5.
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We applied the methods introduced in this paper to estimate the co-

variate effects on the optimal treatment allocation for the patients in this

study. The fitted results under the entropy learning approach are given

in Table 6. From Table 6 we notice that baseline QIDS-SR(16) score is

a significant predictor to determine whether the patient should be treated

with the switch option or the argumentation option in both stages. More

specifically, given other covariates, if the patient has a higher baseline score,

adopting a switch option might have better medical outcome. In addition,

for Stage 2 analysis, baseline score, gender, age and the treatment time

are all significant in determining the best treatment options. Interestingly,

the treatment time is significant with a positive sign, indicating that given

other covariates, treatment argumentation might benefit the patients for a

longer term.

For comparison, using the same sets of covariates, estimation results

based on Q-learning are given in Table 7 where the estimated confidence

intervals are obtained from the bootstrap procedure. Eyeballing Table 7, we

note that gender is identified as the only important factor to the treatment

selection at stage 2. Such an existing method may be less powerful than

our proposed entropy learning since it may miss potentially useful markers.

Consequently, Q-learning may not be able to achieve the most appropriate
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Stage 1 Stage 2

coefficient(sd) p-value coefficient(sd) p-value

Entropy learning

intercept 0.855 (0.987) 0.386 0.452 (0.792) 0.569

chronic -1.231 (0.455) 0.007 0.103 (0.314) 0.742

gender -0.604 (0.340) 0.859 0.702 (0.269) 0.009

age 0.001 (0.016) 0.950 -0.028 (0.012) 0.022

gmc 0.089 (0.359) 0.805 -0.121 (0.274) 0.658

anxious 0.095 (0.373) 0.799 0.235 (0.298) 0.431

week 0.066 (0.036) 0.071 0.089 (0.029) 0.002

qctot -0.084 (0.044) 0.056 -0.111 (0.034) 0.001

A1 - - 0.925 (0.273) 0.001

V̂i 59.617 (5.485) - 25.697 (1.325) -

Table 6: Entropy learning for the STAR*D study.

treatment allocation using a set of important personalized characteristics

identified from a significance study. To compare the performance of the

proposed method with Q-learning in terms of value function, we also com-

pute the estimated mean and standard deviation of the value functions

using the fitted regimes obtained by using our method and the Q-learning

method; see the V̂i values in Tables 6 and 7. We do observe larger mean

value functions for our entropy learning approach, indicating that the treat-

ment regime obtained by our approach is outperforming that of Q-learning

in this data set.

Noted from our experiences, the entropy learning approach may be
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Stage 1 Stage 2

coefficient Lower Upper coefficient Lower Upper

Q-learning

intercept 0.99 -4.28 5.50 -2.17 -5.32 0.73

chronic -0.48 -2.31 1.33 -0.63 -1.75 0.48

gender 0.66 -0.80 2.24 1.30 0.37 2.28

age -0.03 -0.09 0.04 0.02 -0.03 0.07

gmc 0.06 -1.48 1.59 0.26 -0.83 1.39

anxious 1.35 -0.32 3.00 0.62 -0.45 1.65

week -0.14 -0.31 0.04 -0.07 -0.16 0.02

qctot -0.06 -0.24 0.14 -0.02 -0.16 0.11

A1 - - - 0.11 -0.44 0.66

V̂i 40.34 32.08 48.60 20.54 17.83 23.25

Table 7: Bootstrap confidence interval of Q-learning for the STAR*D study.

Lower: lower bound of the 95% confident interval; Upper: upper bound of

the 95% confident interval;
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Stage 1 Stage 2

coefficient(sd) p-value coefficient(sd) p-value

intercept 0.210 (0.740) 0.777 0.182 (0.772) 0.813

chronic -0.183 ( 0.279) 0.511 0.141 (0.296) 0.635

gender 0.012 (0.242) 0.961 0.537 (0.260) 0.039

age 0.010 (0.011) 0.352 -0.030 (0.012) 0.012

gmc -0.093 (0.259) 0.719 -0.219 (0.275) 0.425

anxious -0.117 (0.275) 0.671 0.096 (0.295) 0.744

week 0.032 (0.029) 0.269 0.098 (0.027) < 0.001

qctot -0.091 (0.030) 0.003 -0.104 (0.031) 0.001

A1 - - 0.851 (0.260) 0.001

Table 8: Ordinary association study for the STAR*D data using logistic

regression models.

incorrectly interpreted by some practitioners. The fitted regression model

should not be confused with an ordinary association study resulted from

fitting unweighted logistic regression models to the two stage data (see

Table 8). In fact, the significant findings from Table 8 only establish how

covariates affect the likelihood of being observed in a treatment in lieu of

the likelihood of being allocated into the most appropriate treatment.

6. Discussion

There are many open questions that may follow our development in this

paper. First, the linear specification of the treatment allocation rule may
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be replaced by a nonparametric formulation such as a partly linear model

or an additive regression model. The implementation of such methods is

now widely available in all kinds of statistical packages. More efforts are

still demanded to establish similar theoretical properties as in this paper

and achieve interpretable results.

Second, to carry out the clinical study and select the best treatment us-

ing our approach, it is necessary to evaluate the required sample size at the

designing stage. Applying the theoretical results attained in this paper, we

may proceed to calculate the total number of subjects for every treatment

group. However, more empirical studies on various types of settings and

data distributions can provide stronger support to the suggestion based on

asymptotic results.

Finally, missing values are quite common for the multi-stage analysis.

Most of analysts follow the standard practice to exclude cases with missing

observations under the missing-at-random assumption. It is a difficult task

to investigate the reason of missing data and an even more difficult task to

address the problem when missing is not at random. We encourage more

research works in this direction.
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Figure 2: Boxplot of misclassification rates over 2000 replications.
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Figure 3: P-value of X>β̂1 under case 1 over 1000 replications.
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Figure 4: P-value of X>1 β̂1 under case 2 over 1000 replications.
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